Search Results

You are looking at 1 - 10 of 61 items for

  • Author or Editor: Michael Ghil x
  • Refine by Access: All Content x
Clear All Modify Search
Michael Ghil

Abstract

We study a diffusive energy-balance climate model, governed by a nonlinear parabolic partial differential equation. Three positive steady-state solutions of this equation are found; they correspond to three possible climates of our planet: an interglacial (nearly identical to the present climate), a glacial, and a completely ice-covered earth. We consider also models similar to the main one studied, and determine the number of their steady states. All the models have albedo continuously varying with latitude and temperature, and entirely diffusive horizontal heat transfer. The diffusion is taken to be nonlinear as well as linear.

We investigate the stability under small perturbations of the main model's climates. A stability criterion is derived, and its application shows that the “present climate” and the “deep freeze” are stable, whereas the model's glacial is unstable. A variational principle is introduced to confirm the results of this stability analysis.

We examine the dependence of the number of steady states and of their stability on the average solar radiation. The main result is that for a sufficient decrease in solar radiation (∼2%) the glacial and interglacial solutions disappear, leaving the ice-covered earth as the only possible climate.

Full access
Michael Ghil

Abstract

No abstract available.

Full access
Michael Ghil and Ricardo Todling

Abstract

Sequential data assimilation schemes approaching true optimality for sizable atmospheric models are becoming a reality. The behavior of the Kalman filter (KF) under difficult conditions needs therefore to be understood. In this two-part paper the authors implemented a KF for a two-dimensional shallow-water model with one or two layers. The model is linearized about a basic flow that depends on latitude; this permits the one-layer (1-L) case to be barotropically unstable. Constant vertical shear in the two-layer (2-L) case induces baroclinic instability.

The stable and unstable 1-L cases were studied in Part I. In the unstable case, even a very small number of observations can keep the forecast and analysis errors from the exponential growth induced by the flow's instability. In Part II, the authors now consider the 2-L, baroclinically stable and unstable cases. Simple experiments show that both cases are, quite similar to their barotropic counterparts. Once again, the KF is shown to keep the estimated flow's error bars bounded, even when a small number of observations—taken with realistic frequency—is utilized.

Full access
Fei Chen and Michael Ghil

Abstract

A hybrid coupled ocean–atmosphere model is used to investigate low-frequency variability in the climate system. The model's atmospheric component is a Budyko-Sellers-North, two-dimensional energy-balance model; the oceanic component is a simplified general circulation model. The coupled model is confined to an idealized, rectangular North Atlantic basin. In the present model version, the ocean density depends exclusively on temperature.

An interdecadal oscillation with a period of 40–50 years is found in the hybrid coupled model when model parameters are within the climatological range, even though density does not depend on salinity. This interdecadal oscillation is characterized by a pair of vortices of opposite signs, that grow and decay in quadrature with each other in the ocean's upper layer; their centers follow each other anticlockwise through the northwestern quadrant of the model domain.

The interdecadal oscillation's physical mechanism resembles that of the interdecadal oscillation analyzed in an earlier, uncoupled model by the same authors. Central to the mechanism is the prescribed component in the surface heat fluxes. In this coupled model, the prescribed forcing component comes from solar radiation. Surface-density variations in high latitudes drive the oscillation and are due to the cooling effect of atmospheric forcing there.

Sensitivity studies are performed by adjusting two free parameters in the model: the atmospheric thermal diffusion coefficient and air-sea coupling coefficient. The 40–50 year oscillation arises, by Hopf bifurcation as the model parameters cross the neutral stability curve. The resulting limit cycle is fairly robust, exists in a wide parameter range, and responds more to the diffusion parameter than the coupling parameter. Larger values of both parameters reduce the amplitude of the interdecadal oscillation, but neither affects crucially its period.

Full access
Yizhak Feliks and Michael Ghil

Abstract

The instability of the downwelling front along the southern coast of Asia Minor is studied with a multimode quasigeostrophic model. Linear analysis shows that the most unstable wave has a length of about 100 km, The wavelength depends only very weakly on the transversal scale of the front. The wave period is larger by an order of magnitude than the e-folding time; that is, rapid local growth occurs with little propagation. The growth rate is proportional to the maximum of the speed of the downwelling westward jet.

The evolution of the frontal waves can be divided into three stages. At first, the evolution is mainly due to linear instability; the second stage is characterized by closed eddy formation; and finally, isolated eddies separate from the front and penetrate into the open sea. The largest amount of available potential energy is transferred to kinetic energy and into the barotropic mode during the second, eddy-forming stage, when several dipoles develop in this mode. The formation of anticyclonic eddies is due to advection of the ridges of the unstable wave's first baroclinic mode by the barotropic dipole. The baroclinic eddies ride on the barotropic dipoles. The propagation of such dipole-rider systems is determined mainly by the evolution of the corresponding barotropic dipole.

These results suggest that the warm- and salty-core eddies observed in the Eastern Mediterranean are due, at least in part, to the instability of the downwelling front along the basin's northeastern coastline. There is both qualitative and quantitative similarity between the observed and calculated eddies in their radius (35–50 km), thermal structure, and distribution along the coast.

Full access
Shi Jiang and Michael Ghil

Abstract

Low-frequency variability of western boundary currents (WBCs) is pervasive in both observations and numerical models of the oceans. Because advection is of the essence in WBCs, nonlinearities are thought to be important in causing their variability. In numerical models, this variability can be distorted by our incomplete knowledge of the system’s dynamics, manifested in model errors. A reduced-gravity shallow-water model is used to study the interaction of model error with nonlinearity. Here our focus is on a purely periodic solution and a weakly aperiodic one.

For the periodic case, the noise-corrupted system loses its periodicity due to nonlinear processes. For the aperiodic case, the intermittent occurrences of two relatively persistent states—a straight jet with high total energy and a meandering one with low total energy—in the perturbed model are almost out of phase with the unperturbed one. For both cases, the simulation errors are trapped in the WBC region, where the nonlinear dynamics is most vigorous.

Satellite altimeters measure sea surface height globally in space and almost synoptically in time. They provide an opportunity to track WBC variability through its pronounced sea surface signature. By assimilating simulated Geosat data into the stochastically perturbed model with the improved optimal interpolation method, the authors can faithfully track the periodic behavior that had been lost and capture the correct occurrences of two relatively persistent patterns for the aperiodic case. The simulation errors accumulating in the WBC region are suppressed, thus improving the system’s predictability. The domain-averaged rms errors reach a statistical equilibrium below the observational error level.

Comparison experiments using simulated Geosat and TOPEX/POSEIDON tracks show that spatially dense sampling yields lower rms errors than temporally frequent sampling for the present model. A criterion defining spatial oversampling—that is, diminishing returns—is also addressed.

Full access
Michael Ghil and Kingtse Mo

Abstract

In Part II of this two-part article, we complete the systematic examination of oscillatory modes in the global atmosphere by studying 12 years of 500 mb geopotential heights in the Southern Hemisphere. As in Part I, for the tropics and Northern Hemisphere extratropics, the data were band-pass filtered to focus on intraseasonal (IS) phenomena, and spatial EOFs were obtained. The leading principal components were subjected to singular spectrum analysis (SSA), in order to identify nonlinear IS oscillations with high statistical confidence.

In the Southern Hemisphere, the dominant mode has a period of 23 days, with spatial patterns carried by the second and third winter EOF of the IS band. It has a zonal wavenumber-four structure. The 40-day mode is second, and dominated by wavenumbers three and four, while a 16-day mode is too weak to separate its spatial behavior from the previous two. The IS dynamics in the Southern Hemisphere is more complex and dominated by shorter wavenumbers than the Northern Hemisphere. No statistically significant correlations between the Southern Hemisphere and the tropics or the Northern Hemisphere are apparent in the IS band.

Full access
Zheng Hao and Michael Ghil

Abstract

A major error source in the numerical simulation of tropical oceans is the uncertainty in wind stress forcing. A reduced-gravity shallow-water model has been used to test how assimilated ocean data correct simulation errors caused by erroneous wind stress in the tropics. The geometry of the basin is rectangular and symmetric about the equator, and the long-wave approximation is applied. All experiments are of the identical-twin type: the “observations” are generated by sampling the desired reference solution, and the data are assimilated by optimal interpolation into the same model, with wind stress forcing different from that in the reference case.

In this paper, three types of wind stress errors are considered: errors of timing only, as well as persistent errors, systematic or stochastic. The relative usefulness of thermocline depth and current observations, and the effect of data distribution on state estimation are examined. The role of equatorial ocean waves in the process of data assimilation is also studied.

Full access
Cécile Penland and Michael Ghil

Abstract

Multivariate linear prediction based on single-lag inverse modeling is developed further and critically examined. The method is applied to the National Meteorological Center analyses of Northern Hemisphere 700-mb geopotential height anomalies, which have been filtered to eliminate periods shorter than 10 days. Empirically derived normal modes of the randomly forced linear system are usually correlated, even at zero lag, suggesting that combinations of modes should be used in predictions. Due to nonlinearities in the dynamics and the neglect of interactions with other pressure levels, the lag at which the analysis is performed is crucial; best predictions obtain when the autocovariances involved in the analysis are calculated at a lag comparable to the exponential decay times of the modes. Errors in prediction have a significant seasonal dependence, indicating that the annual cycle affects the higher-order statistics of the field. Optimized linear predictions using this method are useful for about half a day longer than predictions made by persistence.

Conditional probabilities are much more efficiently calculated using normal-mode parameters than from histograms, and yield similar results. Maps of the model's Fourier spectra—integrated over specified frequency intervals and consistent with the assumptions made in a linear analysis—agree with maps obtained from fast Fourier transforms of the data.

Full access
Masahide Kimoto and Michael Ghil

Abstract

This paper presents an observational analysis of recurrent flow patterns in the Northern Hemisphere (NH) winter, based on a 37-year series of daily 700-mb height anomalies. Large-scale anomaly patterns that appear repeatedly and persist beyond synoptic time scales are identified by searching for local maxima of probability density in a phase subspace, which is spanned by the leading empirical orthogenal functions (EOFs).

By using an angular probability density function (PDF), we focus on the shape, not magnitude, of the anomaly patterns. The PDF estimate is nonparametric; that is, our algorithm makes no a priori assumption on symmetry with respect to the climatological mean as in one-point correlation and rotated EOF analyses. The local density maxima are searched by iterative bump hunting.

Based on observed partial decoupling between the Pacific (PAC) and the Atlantic-Eurasian (ATL) sectors, the classification algorithm is applied separately to each of the two. Seven PAC and six ATL patterns are obtained. Anomaly maps that belong to the neighborhood of each PDF peak are associated with distinct flow regimes. These include regional blocked and zonal flows, and wave train-like anomaly patterns, some of them well known from previous studies, others revealed by our analysis for the first time.

Successive appearances of flow regimes are generally separated by unclassifiable, transient periods. A Markov chain describes transitions between different flow regimes; highly likely, as well as unlikely routes of transition exist. Chains of preferred transitions may be related to the existence of oscillatory modes in the NH extratropics.

A synoptic characterization of onsets and breaks for the flow regimes obtained is given by compositing. In situ evolutions of anomaly patterns, slow westward shifts of high-latitude anomaly centers, and successive down-stream increase of anomaly magnitudes are the typical signatures of such events.

Full access