Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Michael I. Biggerstaff x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Michael I. Biggerstaff, Louis J. Wicker, Jerry Guynes, Conrad Ziegler, Jerry M. Straka, Erik N. Rasmussen, Arthur Doggett IV, Larry D. Carey, John L. Schroeder, and Chris Weiss

A group of scientists from three universities across two different states and from one federal research laboratory joined together to build and deploy two mobile C-band Doppler weather radars to enhance research and promote meteorological education. This 5-yr project led to the development of the Shared Mobile Atmospheric Research and Teaching (SMART) radar coalition that built the first mobile C-band Doppler weather radar in the United States and also successfully deployed the first mobile C-band dual-Doppler network in a landfalling hurricane. This accomplishment marked the beginning of an era in which high temporal and spatial resolution precipitation and dual-Doppler wind data over mesoscale (~100 km) regions can be acquired from mobile ground-based platforms during extreme heavy rain and high-wind events.

In this paper, we discuss the rationale for building the mobile observing systems, highlight some of the challenges that were encountered in creating a unique multiagency coalition, provide examples of how the SMART radars have contributed to research and education, and discuss future plans for continued development and management of the radar facility, including how others may use the radars for their own research and teaching programs.

The capability of the SMART radars to measure winds in nonprecipitating environments, to capture rapidly evolving, short-lived, small-scale tornadic circulations, and to sample mesoscale regions with high spatial resolution over broad regions of heavy rainfall is demonstrated. Repeated successful intercepts provide evidence that these radars are capable of being used to study a wide range of atmospheric phenomena.

Full access
Pedro L. Fernández-Cabán, A. Addison Alford, Martin J. Bell, Michael I. Biggerstaff, Gordon D. Carrie, Brian Hirth, Karen Kosiba, Brian M. Phillips, John L. Schroeder, Sean M. Waugh, Eric Williford, Joshua Wurman, and Forrest J. Masters


While Hurricane Harvey will best be remembered for record rainfall that led to widespread flooding in southeastern Texas and western Louisiana, the storm also produced some of the most extreme wind speeds ever to be captured by an adaptive mesonet at landfall. This paper describes the unique tools and the strategy used by the Digital Hurricane Consortium (DHC), an ad hoc group of atmospheric scientists and wind engineers, to intercept and collect high-resolution measurements of Harvey’s inner core and eyewall as it passed over Aransas Bay into mainland Texas. The DHC successfully deployed more than 25 observational assets, leading to an unprecedented view of the boundary layer and winds aloft in the eyewall of a major hurricane at landfall. Analysis of anemometric measurements and mobile radar data during heavy convection shows the kinematic structure of the hurricane at landfall and the suspected influence of circulations aloft on surface winds and extreme surface gusts. Evidence of mesoscale vortices in the interior of the eyewall is also presented. Finally, the paper reports on an atmospheric sounding in the inner eyewall that produced an exceptionally large and potentially record value of precipitable water content for observed soundings in the continental United States.

Open access
Donald R. MacGorman, W. David Rust, Terry J. Schuur, Michael I. Biggerstaff, Jerry M. Straka, Conrad L. Ziegler, Edward R. Mansell, Eric C. Bruning, Kristin M. Kuhlman, Nicole R. Lund, Nicholas S. Biermann, Clark Payne, Larry D. Carey, Paul R. Krehbiel, William Rison, Kenneth B. Eack, and William H. Beasley

The field program of the Thunderstorm Electrification and Lightning Experiment (TELEX) took place in central Oklahoma, May–June 2003 and 2004. It aimed to improve understanding of the interrelationships among microphysics, kinematics, electrification, and lightning in a broad spectrum of storms, particularly squall lines and storms whose electrical structure is inverted from the usual vertical polarity. The field program was built around two permanent facilities: the KOUN polarimetric radar and the Oklahoma Lightning Mapping Array. In addition, balloon-borne electric-field meters and radiosondes were launched together from a mobile laboratory to measure electric fields, winds, and standard thermodynamic parameters inside storms. In 2004, two mobile C-band Doppler radars provided high-resolution coordinated volume scans, and another mobile facility provided the environmental soundings required for modeling studies. Data were obtained from 22 storm episodes, including several small isolated thunderstorms, mesoscale convective systems, and supercell storms. Examples are presented from three storms. A heavy-precipitation supercell storm on 29 May 2004 produced greater than three flashes per second for 1.5 h. Holes in the lightning density formed and dissipated sequentially in the very strong updraft and bounded weak echo region of the mesocyclone. In a small squall line on 19 June 2004, most lightning flashes in the stratiform region were initiated in or near strong updrafts in the convective line and involved positive charge in the upper part of the radar bright band. In a small thunderstorm on 29 June 2004, lightning activity began as polarimetric signatures of graupel first appeared near lightning initiation regions.

Full access
Bart Geerts, David Parsons, Conrad L. Ziegler, Tammy M. Weckwerth, Michael I. Biggerstaff, Richard D. Clark, Michael C. Coniglio, Belay B. Demoz, Richard A. Ferrare, William A. Gallus Jr., Kevin Haghi, John M. Hanesiak, Petra M. Klein, Kevin R. Knupp, Karen Kosiba, Greg M. McFarquhar, James A. Moore, Amin R. Nehrir, Matthew D. Parker, James O. Pinto, Robert M. Rauber, Russ S. Schumacher, David D. Turner, Qing Wang, Xuguang Wang, Zhien Wang, and Joshua Wurman


The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night.

To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings.

Full access