Search Results
Abstract
Described is an improved algorithm that uses channel 1 and 2 radiances of the Advanced Very High Resolution Radiometer (AVHRR) to retrieve the aerosol optical thickness and Ångström exponent over the ocean. Specifically discussed are recent changes in the algorithm as well as the results of a sensitivity study analyzing the effect of several sources of retrieval errors not addressed previously. Uncertainties in the AVHRR radiance calibration (particularly in the deep-space count value) may be among the major factors potentially limiting the retrieval accuracy. A change by one digital count may lead to a 50% change in the aerosol optical thickness and a change of 0.4 in the Ångström exponent. On the other hand, the performance of two-channel algorithms weakly depends on a specific choice of the aerosol size distribution function with less than 10% changes in the optical thickness resulting from replacing a power law with a bimodal modified lognormal distribution. The updated algorithm is applied to a 10-yr period of observations (Jul 1983–Aug 1994), which includes data from NOAA-7, NOAA-9 (Feb 1985–Nov 1988), and NOAA-11 satellites. (The results are posted online at http://gacp.giss.nasa.gov/retrievals.)
The NOAA-9 record reveals a seasonal cycle with maxima occurring around January–February and minima in June–July in the globally averaged aerosol optical thickness. The NOAA-7 data appear to show a residual effect of the El Chichón eruption (Mar 1982) as increased optical thickness values in the beginning of the record. The June 1991 eruption of Mt. Pinatubo resulted in a sharp increase in the aerosol load to more than double its normal value. The NOAA-9 record shows no discernible long-term trends in the global and hemisphere averages of the optical thickness and Ångström exponent. On the other hand, there is a discontinuity in the Ångström exponent values derived from NOAA-9 and NOAA-11 data and a significant temporal trend in the NOAA-11 record. The latter is unlikely to be related to the Mt. Pinatubo eruption and may be indicative of a serious calibration problem.
The NOAA-9 record shows that the Northern Hemisphere mean optical thickness systematically exceeds that averaged over the Southern Hemisphere. Zonal means of the optical thickness exhibit an increase in the tropical regions of the Northern Hemisphere associated with annual desert dust outbursts and a springtime increase at middle latitudes of the Northern Hemisphere. Increased aerosol loads observed at middle latitudes of the Southern Hemisphere are probably associated with higher sea salt particle concentrations. Reliable extension of the retrieval record beyond the NOAA-9 lifetime will help to corroborate these findings.
Abstract
Described is an improved algorithm that uses channel 1 and 2 radiances of the Advanced Very High Resolution Radiometer (AVHRR) to retrieve the aerosol optical thickness and Ångström exponent over the ocean. Specifically discussed are recent changes in the algorithm as well as the results of a sensitivity study analyzing the effect of several sources of retrieval errors not addressed previously. Uncertainties in the AVHRR radiance calibration (particularly in the deep-space count value) may be among the major factors potentially limiting the retrieval accuracy. A change by one digital count may lead to a 50% change in the aerosol optical thickness and a change of 0.4 in the Ångström exponent. On the other hand, the performance of two-channel algorithms weakly depends on a specific choice of the aerosol size distribution function with less than 10% changes in the optical thickness resulting from replacing a power law with a bimodal modified lognormal distribution. The updated algorithm is applied to a 10-yr period of observations (Jul 1983–Aug 1994), which includes data from NOAA-7, NOAA-9 (Feb 1985–Nov 1988), and NOAA-11 satellites. (The results are posted online at http://gacp.giss.nasa.gov/retrievals.)
The NOAA-9 record reveals a seasonal cycle with maxima occurring around January–February and minima in June–July in the globally averaged aerosol optical thickness. The NOAA-7 data appear to show a residual effect of the El Chichón eruption (Mar 1982) as increased optical thickness values in the beginning of the record. The June 1991 eruption of Mt. Pinatubo resulted in a sharp increase in the aerosol load to more than double its normal value. The NOAA-9 record shows no discernible long-term trends in the global and hemisphere averages of the optical thickness and Ångström exponent. On the other hand, there is a discontinuity in the Ångström exponent values derived from NOAA-9 and NOAA-11 data and a significant temporal trend in the NOAA-11 record. The latter is unlikely to be related to the Mt. Pinatubo eruption and may be indicative of a serious calibration problem.
The NOAA-9 record shows that the Northern Hemisphere mean optical thickness systematically exceeds that averaged over the Southern Hemisphere. Zonal means of the optical thickness exhibit an increase in the tropical regions of the Northern Hemisphere associated with annual desert dust outbursts and a springtime increase at middle latitudes of the Northern Hemisphere. Increased aerosol loads observed at middle latitudes of the Southern Hemisphere are probably associated with higher sea salt particle concentrations. Reliable extension of the retrieval record beyond the NOAA-9 lifetime will help to corroborate these findings.
Abstract
A data library is developed containing the scattering, absorption, and polarization properties of ice particles in the spectral range from 0.2 to 100 μm. The properties are computed based on a combination of the Amsterdam discrete dipole approximation (ADDA), the T-matrix method, and the improved geometric optics method (IGOM). The electromagnetic edge effect is incorporated into the extinction and absorption efficiencies computed from the IGOM. A full set of single-scattering properties is provided by considering three-dimensional random orientations for 11 ice crystal habits: droxtals, prolate spheroids, oblate spheroids, solid and hollow columns, compact aggregates composed of eight solid columns, hexagonal plates, small spatial aggregates composed of 5 plates, large spatial aggregates composed of 10 plates, and solid and hollow bullet rosettes. The maximum dimension of each habit ranges from 2 to 10 000 μm in 189 discrete sizes. For each ice crystal habit, three surface roughness conditions (i.e., smooth, moderately roughened, and severely roughened) are considered to account for the surface texture of large particles in the IGOM applicable domain. The data library contains the extinction efficiency, single-scattering albedo, asymmetry parameter, six independent nonzero elements of the phase matrix (P 11, P 12, P 22, P 33, P 43, and P 44), particle projected area, and particle volume to provide the basic single-scattering properties for remote sensing applications and radiative transfer simulations involving ice clouds. Furthermore, a comparison of satellite observations and theoretical simulations for the polarization characteristics of ice clouds demonstrates that ice cloud optical models assuming severely roughened ice crystals significantly outperform their counterparts assuming smooth ice crystals.
Abstract
A data library is developed containing the scattering, absorption, and polarization properties of ice particles in the spectral range from 0.2 to 100 μm. The properties are computed based on a combination of the Amsterdam discrete dipole approximation (ADDA), the T-matrix method, and the improved geometric optics method (IGOM). The electromagnetic edge effect is incorporated into the extinction and absorption efficiencies computed from the IGOM. A full set of single-scattering properties is provided by considering three-dimensional random orientations for 11 ice crystal habits: droxtals, prolate spheroids, oblate spheroids, solid and hollow columns, compact aggregates composed of eight solid columns, hexagonal plates, small spatial aggregates composed of 5 plates, large spatial aggregates composed of 10 plates, and solid and hollow bullet rosettes. The maximum dimension of each habit ranges from 2 to 10 000 μm in 189 discrete sizes. For each ice crystal habit, three surface roughness conditions (i.e., smooth, moderately roughened, and severely roughened) are considered to account for the surface texture of large particles in the IGOM applicable domain. The data library contains the extinction efficiency, single-scattering albedo, asymmetry parameter, six independent nonzero elements of the phase matrix (P 11, P 12, P 22, P 33, P 43, and P 44), particle projected area, and particle volume to provide the basic single-scattering properties for remote sensing applications and radiative transfer simulations involving ice clouds. Furthermore, a comparison of satellite observations and theoretical simulations for the polarization characteristics of ice clouds demonstrates that ice cloud optical models assuming severely roughened ice crystals significantly outperform their counterparts assuming smooth ice crystals.
Abstract
For an 8-month period aerosol optical depth (AOD) is compared, derived over global oceans with five different retrieval algorithms applied to four satellite instruments flown on board three satellite platforms. The Advanced Very High Resolution Radiometer (AVHRR) was flown on board NOAA-14, the Ocean Color and Temperature Scanner (OCTS) and the Polarization and Directionality of the Earth's Reflectances (POLDER) on board the Advanced Earth Observing Satellite (ADEOS), and the Total Ozone Mapping Spectrometer (TOMS) on board the Earth Probe satellites. The aerosol data are presented on the same format and converted to the same wavelength in the comparison and can therefore be a useful tool in validation of global aerosol models, in particular models that can be driven with meteorological data for the November 1996 to June 1997 period studied here. Large uncertainties in the global mean AOD are found. There is at least a factor of 2 difference between the AOD from the retrievals. The largest uncertainties are found in the Southern Hemisphere, and the smallest differences mostly near the continents in the Northern Hemisphere. The largest relative differences are probably caused by differences in cloud screening.
Abstract
For an 8-month period aerosol optical depth (AOD) is compared, derived over global oceans with five different retrieval algorithms applied to four satellite instruments flown on board three satellite platforms. The Advanced Very High Resolution Radiometer (AVHRR) was flown on board NOAA-14, the Ocean Color and Temperature Scanner (OCTS) and the Polarization and Directionality of the Earth's Reflectances (POLDER) on board the Advanced Earth Observing Satellite (ADEOS), and the Total Ozone Mapping Spectrometer (TOMS) on board the Earth Probe satellites. The aerosol data are presented on the same format and converted to the same wavelength in the comparison and can therefore be a useful tool in validation of global aerosol models, in particular models that can be driven with meteorological data for the November 1996 to June 1997 period studied here. Large uncertainties in the global mean AOD are found. There is at least a factor of 2 difference between the AOD from the retrievals. The largest uncertainties are found in the Southern Hemisphere, and the smallest differences mostly near the continents in the Northern Hemisphere. The largest relative differences are probably caused by differences in cloud screening.