Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Michael J. Foster x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Amanda Gumber
and
Michael J. Foster

Abstract

A dataset is generated from a method to retrieve distributions of cloud liquid water path over partially cloudy scenes. The method was introduced in a 2011 paper by Foster and coauthors that described the theory and provided test cases. Here it has been applied to Moderate Resolution Imaging Spectroradiometer (MODIS) collection-5 and collection-6 cloud products, resulting in a value-added dataset that contains adjusted distributions of cloud liquid water path for more than 10 years for marine liquid cloud for both Aqua and Terra. This method adjusts horizontal distributions of cloud optical properties to be more consistent with observed visible reflectance and is especially useful in areas where cloud optical retrievals fail or are considered to be of low quality. Potential uses of this dataset include validation of climate and radiative transfer models and facilitation of studies that intercompare satellite records. Results show that the fit method is able to reduce bias between observed visible reflectance and that derived from optical retrievals by up to an average improvement of 3%. The level of improvement is dependent on several factors, including seasonality, viewing geometry, cloud fraction, and cloud heterogeneity. Applications of this dataset are explored through a satellite intercomparison with PATMOS-x and Global Change Observation Mission–First Water (GCOM-W1; “SHIZUKU”) AMSR-2 and use of a Monte Carlo radiative transfer model. From the 3D Monte Carlo model simulations, albedo biases are found when the method is applied, with seasonal averages that range over 0.02–0.06.

Full access
Michael J. Foster
,
Ralf Bennartz
, and
Andrew Heidinger

Abstract

A new method of deriving statistical moments related to the distribution of liquid water path over partially cloudy scenes is tested using a satellite cloud climatology. The method improves the ability to reconstruct total-scene visible reflectance when compared with an approach that relies on valid liquid water path retrievals, and thus it maintains physical consistency with the primary satellite observations when deriving cloud climatologies. A global application of the new method finds a mean bias of −0.008 ± 0.017 when reconstructing total-scene reflectance from liquid water path distributions, as compared with a bias of 0.05 ± 0.047 when using a conventional approach. Application of the method to a multidecadal cloud climatology suggests that this may provide a means of identifying data artifacts that could affect long-term cloud property trends. The conservation of reflectance plus the ease of applicability to various satellite datasets makes this method a valuable tool for model validation and comparison of satellite climatologies. Gaussian and gamma functions are used to approximate the distribution of horizontal subgrid-scale liquid water path for 1° × 1° scenes, and while both functions perform well for the majority of atmospheric conditions, it is found that the Gaussian distribution generates a negative bias for cases in which visible reflectance is very high and that neither function is able to represent liquid water path well in the few cases in which the observed distribution is bi- or multimodal.

Full access
Andrew K. Heidinger
,
Amato T. Evan
,
Michael J. Foster
, and
Andi Walther

Abstract

The naive Bayesian methodology has been applied to the challenging problem of cloud detection with NOAA’s Advanced Very High Resolution Radiometer (AVHRR). An analysis of collocated NOAA-18/AVHRR and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)/Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations was used to automatically and globally derive the Bayesian classifiers. The resulting algorithm used six Bayesian classifiers computed separately for seven surface types. Relative to CALIPSO, the final results show a probability of correct detection of roughly 90% over water, deserts, and snow-free land; 82% over the Arctic; and below 80% over the Antarctic. This technique is applied within the NOAA Pathfinder Atmosphere’s Extended (PATMOS-x) climate dataset and the Clouds from AVHRR Extended (CLAVR-x) real-time product generation system. Comparisons of the PATMOS-x results with those from International Satellite Cloud Climatology Project (ISCCP) and Moderate Resolution Imaging Spectroradiometer (MODIS) indicate close agreement with zonal mean differences in cloud amount being less than 5% over most zones. Most areas of difference coincided with regions where the Bayesian cloud mask reported elevated uncertainties. The ability to report uncertainties is a critical component of this approach.

Full access