Search Results

You are looking at 1 - 10 of 12 items for :

  • Author or Editor: Michael M. French x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Kristofer S. Tuftedal
,
Michael M. French
,
Darrel M. Kingfield
, and
Jeffrey C. Snyder

Abstract

The time preceding supercell tornadogenesis and tornadogenesis “failure” has been studied extensively to identify differing attributes related to tornado production or lack thereof. Studies from the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX) found that air in the rear-flank downdraft (RFD) regions of non- and weakly tornadic supercells had different near-surface thermodynamic characteristics than that in strongly tornadic supercells. Subsequently, it was proposed that microphysical processes are likely to have an impact on the resulting thermodynamics of the near-surface RFD region. One way to view proxies to microphysical features, namely, drop size distributions (DSDs), is through use of polarimetric radar data. Studies from the second VORTEX used data from dual-polarization radars to provide evidence of different DSDs in the hook echoes of tornadic and nontornadic supercells. However, radar-based studies during these projects were limited to a small number of cases preventing result generalizations. This study compiles 68 tornadic and 62 nontornadic supercells using Weather Surveillance Radar–1988 Doppler (WSR-88D) data to analyze changes in polarimetric radar variables leading up to, and at, tornadogenesis and tornadogenesis failure. Case types generally did not show notable hook echo differences in variables between sets, but did show spatial hook echo quadrant DSD differences. Consistent with past studies, differential radar reflectivity factor (Z DR) generally decreased leading up to tornadogenesis and tornadogenesis failure; in both sets, estimated total number concentration increased during the same times. Relationships between DSDs and the near-storm environment, and implications of results for nowcasting tornadogenesis, also are discussed.

Full access
Michael M. French
,
Howard B. Bluestein
,
Ivan PopStefanija
,
Chad A. Baldi
, and
Robert T. Bluth

Abstract

A mobile, phased-array Doppler radar, the Mobile Weather Radar, 2005 X-band, Phased Array (MWR-05XP), has been used since 2007 to obtain data in supercells and tornadoes. Rapidly updating, volumetric data of tornadic vortex signatures (TVSs) associated with four tornadoes are used to investigate the time–height evolution of TVS intensity, position, and dissipation up through storm midlevels. Both TVS intensity and position were highly variable in time and height even during tornado mature phases. In one case, a TVS associated with a tornado dissipated aloft and a second TVS formed shortly thereafter while there was one continuous TVS near the ground. In a second case, the TVS associated with a long-lived, violent tornado merged with a second TVS (likely a second cyclonic tornado) causing the original TVS to strengthen. TVS dissipation occurred first at a height of ~1.5 km AGL and then at progressively higher levels in two cases; TVS dissipation occurred last in the lowest 1 km in three cases examined. Possible explanations are provided for the unsteady nature of TVS intensity and a conceptual model is presented for the initial dissipation of TVSs at ~1.5 km AGL.

Full access
Michael M. French
,
Howard B. Bluestein
,
Ivan PopStefanija
,
Chad A. Baldi
, and
Robert T. Bluth

Abstract

Observations from a hybrid phased-array Doppler radar, the Mobile Weather Radar, 2005 X-band, Phased Array (MWR-05XP), were used to investigate the vertical development of tornadic vortex signatures (TVSs) during supercell tornadogenesis. Data with volumetric update times of ∼10 s, an order of magnitude better than that of most other mobile Doppler radars, were obtained up to storm midlevels during the formation of three tornadoes. It is found that TVSs formed upward with time during tornadogenesis for two cases. In a third case, missing low-level data prevented a complete time–height analysis of TVS development; however, TVS formation occurred first near the ground and then at storm midlevels several minutes later. These results are consistent with the small number of volumetric mobile Doppler radar tornadogenesis cases from the past ∼10 years, but counter to studies prior to that, in which a descending TVS was observed in roughly half of tornado cases utilizing Weather Surveillance Radar-1988 Doppler (WSR-88D) data. A comparative example is used to examine the possible effects relatively long WSR-88D volumetric update times have on determining the mode of tornadogenesis.

Full access
Timothy A. Supinie
,
Youngsun Jung
,
Ming Xue
,
David J. Stensrud
,
Michael M. French
, and
Howard B. Bluestein

Abstract

Several data assimilation and forecast experiments are undertaken to determine the impact of special observations taken during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) on forecasts of the 5 June 2009 Goshen County, Wyoming, supercell. The data used in these experiments are those from the Mobile Weather Radar, 2005 X-band, Phased Array (MWR-05XP); two mobile mesonets (MM); and several mobile sounding units. Data sources are divided into “routine,” including those from operational Weather Surveillance Radar-1988 Dopplers (WSR-88Ds) and the Automated Surface Observing System (ASOS) network, and “special” observations from the VORTEX2 project.

VORTEX2 data sources are denied individually from a total of six ensemble square root filter (EnSRF) data assimilation and forecasting experiments. The EnSRF data assimilation uses 40 ensemble members on a 1-km grid nested inside a 3-km grid. Each experiment assimilates data every 5 min for 1 h, followed by a 1-h forecast. All experiments are able to reproduce the basic evolution of the supercell, though the impact of the VORTEX2 observations was mixed. The VORTEX2 sounding data decreased the mesocyclone intensity in the latter stages of the forecast, consistent with observations. The MWR-05XP data increased the forecast vorticity above approximately 1 km AGL in all experiments and had little impact on forecast vorticity below 1 km AGL. The MM data had negative impacts on the intensity of the low-level mesocyclone, by decreasing the vertical vorticity and indirectly by decreasing the buoyancy of the inflow.

Full access
Howard B. Bluestein
,
Michael M. French
,
Jeffrey C. Snyder
, and
Jana B. Houser

Abstract

Supercells dominated by mesocyclones, which tend to propagate to the right of the tropospheric pressure-weighted mean wind, on rare occasions produce anticyclonic tornadoes at the trailing end of the rear-flank gust front. More frequently, mesoanticyclones are found at this location, most of which do not spawn any tornadoes. In this paper, four cases are discussed in which the formation of anticyclonic tornadoes was documented in the plains by mobile or fixed-site Doppler radars. These brief case studies include the analysis of Doppler radar data for tornadoes at the following dates and locations: 1) 24 April 2006, near El Reno, Oklahoma; 2) 23 May 2008, near Ellis, Kansas; 3) 18 March 2012, near Willow, Oklahoma; and 4) 31 May 2013, near El Reno, Oklahoma. Three of these tornadoes were also documented photographically. In all of these cases, a strong mesocyclone (i.e., vortex signature characterized by azimuthal shear in excess of ~5 × 10−3 s−1 or a 20 m s−1 change in Doppler velocity over 5 km) or tornado was observed ~10 km away from the anticyclonic tornado. In three of these cases, the evolution of the tornadic vortex signature in time and height is described. Other features common to all cases are noted and possible mechanisms for anticyclonic tornadogenesis are identified. In addition, a set of estimated environmental parameters for these and other similar cases are discussed.

Full access
Michael M. French
,
Patrick S. Skinner
,
Louis J. Wicker
, and
Howard B. Bluestein

Abstract

Unique observations of the interaction and likely merger of two cyclonic tornadoes are documented. One of the tornadoes involved in the interaction was the enhanced Fujita scale (EF5) El Reno–Piedmont, Oklahoma, tornado from 24 May 2011 and the other was a previously undocumented tornado. Data from three S-band radars: Twin Lakes, Oklahoma (KTLX); Norman, Oklahoma (KOUN); and the multifunction phased-array radar (MPAR), are used to detail the formation of the second tornado, which occurred to the northwest of the original tornado in an area of strong radial convergence. Radar data and isosurfaces of azimuthal shear provide evidence that both tornadoes formed within an elongated area of mesocyclone-scale cyclonic rotation. The path taken by the primary tornado and the formation location of the second tornado are different from previous observations of simultaneous cyclonic tornadoes, which have been most often observed in the cyclic tornadogenesis process. The merger of the two tornadoes occurred during the sampling period of a mobile phased-array radar—the Mobile Weather Radar, 2005 X-Band, Phased Array (MWR-05XP). MWR-05XP electronic scanning in elevation allowed for the merger process to be examined up to 4 km above radar level every 11 s. The tornadic vortex signatures (TVSs) associated with the tornadoes traveled around each other in a counterclockwise direction then merged in a helical manner up through storm midlevels. Upon merging, both the estimated intensity and size of the TVS associated with the resulting tornado increased dramatically. Similarities between the merger observed in this case and in previous cases also are discussed.

Full access
Patrick S. Skinner
,
Christopher C. Weiss
,
Michael M. French
,
Howard B. Bluestein
,
Paul M. Markowski
, and
Yvette P. Richardson

Abstract

Observations collected in the second Verification of the Origins of Rotation in Tornadoes Experiment during a 15-min period of a supercell occurring on 18 May 2010 near Dumas, Texas, are presented. The primary data collection platforms include two Ka-band mobile Doppler radars, which collected a near-surface, short-baseline dual-Doppler dataset within the rear-flank outflow of the Dumas supercell; an X-band, phased-array mobile Doppler radar, which collected volumetric single-Doppler data with high temporal resolution; and in situ thermodynamic and wind observations of a six-probe mobile mesonet.

Rapid evolution of the Dumas supercell was observed, including the development and decay of a low-level mesocyclone and four internal rear-flank downdraft (RFD) momentum surges. Intensification and upward growth of the low-level mesocyclone were observed during periods when the midlevel mesocyclone was minimally displaced from the low-level circulation, suggesting an upward-directed perturbation pressure gradient force aided in the intensification of low-level rotation. The final three internal RFD momentum surges evolved in a manner consistent with the expected behavior of a dynamically forced occlusion downdraft, developing at the periphery of the low-level mesocyclone during periods when values of low-level cyclonic azimuthal wind shear exceeded values higher aloft. Failure of the low-level mesocyclone to acquire significant vertical depth suggests that dynamic forcing above internal RFD momentum surge gust fronts was insufficient to lift the negatively buoyant air parcels comprising the RFD surges to significant heights. As a result, vertical acceleration and the stretching of vertical vorticity in surge parcels were limited, which likely contributed to tornadogenesis failure.

Full access
Howard B. Bluestein
,
Christopher C. Weiss
,
Michael M. French
,
Eric M. Holthaus
,
Robin L. Tanamachi
,
Stephen Frasier
, and
Andrew L. Pazmany

Abstract

The University of Massachusetts W- and X-band, mobile, Doppler radars scanned several tornadoes at close range in south-central Kansas on 12 May 2004. The detailed vertical structure of the Doppler wind and radar reflectivity fields of one of the tornadoes is described with the aid of boresighted video. The inside wall of a weak-echo hole inside the tornado was terminated at the bottom as a bowl-shaped boundary within several tens of meters of the ground. Doppler signatures of horizontal vortices were noted along one edge in the lowest 500 m of the tornado. The vertical structure of Doppler velocity displayed significant variations on the 100-m scale. Near the center of the tornado, a quasi-horizontal, radial bulge of the weak-echo hole at ∼500–600 m AGL dropped to about 400 m above the ground and was evident as a weak-echo band to the south of the tornado. It is suggested that this feature represents echo-weak material transported radially outward by a vertical circulation. Significant vertical variations of Doppler velocity were found in the surface friction layer both inside and outside the tornado core. The shape of a weak-echo notch that was associated with a hook echo wrapped around the tornado is described. Highest Doppler velocities were located outside the condensation funnel. The structure of the other tornadoes is also described, but with much less detail. Some of the analyses are compared with numerical simulations of tornado-like vortices done elsewhere.

Full access
Jana B. Houser
,
Nathaniel McGinnis
,
Kelly M. Butler
,
Howard B. Bluestein
,
Jeffrey C. Snyder
, and
Michael M. French

Abstract

This study presents an investigation into relationships among topographic elevation, surface land cover, and tornado intensity using rapid scan, mobile Doppler radar observations of four tornadoes from the U.S. Central Plains. High spatiotemporal resolution observations of tornadic vortex signatures from the radar’s lowest elevation angle data (in most cases ranging from ~100 to 350 m above ground level) are coupled with digital elevation model (DEM) and 2011 National Land Cover Database (NLCD) data using a geographic information system (GIS). The relationships between 1) tornado intensity and topographic elevation or surface roughness and 2) changes in tornado intensity and changes in topographic elevation or surface roughness are investigated qualitatively, and statistical relationships are quantified and analyzed using a bootstrap permutation method for individual case studies and all cases collectively. Results suggest that there are statistically significant relationships for individual cases, but the relationships defy generalization and are different on a case-by-case basis, which may imply that they are coincidental, indicating a null correlation.

Open access
Howard B. Bluestein
,
Michael M. French
,
Robin L. Tanamachi
,
Stephen Frasier
,
Kery Hardwick
,
Francesc Junyent
, and
Andrew L. Pazmany

Abstract

A mobile, dual-polarization, X-band, Doppler radar scanned tornadoes at close range in supercells on 12 and 29 May 2004 in Kansas and Oklahoma, respectively. In the former tornadoes, a visible circular debris ring detected as circular regions of low values of differential reflectivity and the cross-correlation coefficient was distinguished from surrounding spiral bands of precipitation of higher values of differential reflectivity and the cross-correlation coefficient. A curved band of debris was indicated on one side of the tornado in another. In a tornado and/or mesocyclone on 29 May 2004, which was hidden from the view of the storm-intercept team by precipitation, the vortex and its associated “weak-echo hole” were at times relatively wide; however, a debris ring was not evident in either the differential reflectivity field or in the cross-correlation coefficient field, most likely because the radar beam scanned too high above the ground. In this case, differential attenuation made identification of debris using differential reflectivity difficult and it was necessary to use the cross-correlation coefficient to determine that there was no debris cloud. The latter tornado’s parent storm was a high-precipitation (HP) supercell, which also spawned an anticyclonic tornado approximately 10 km away from the cyclonic tornado, along the rear-flank gust front. No debris cloud was detected in this tornado either, also because the radar beam was probably too high.

Full access