Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Michael Pritchard x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Michael S. Pritchard and Da Yang


The climate sensitivity of the Madden–Julian oscillation (MJO) is measured across a broad range of temperatures (1°–35°C) using a convection-permitting global climate model with homogenous sea surface temperatures. An MJO-like signal is found to be resilient in all simulations. These results are used to investigate two ideas related to the modern “moisture mode” view of MJO dynamics. The first hypothesis is that the MJO has dynamics analogous to a form of radiative convective self-aggregation in which longwave energy maintenance mechanisms shut down for SST ≪ 25°C. Inconsistent with this hypothesis, the explicitly simulated MJO survives cooling and retains leading moist static energy (MSE) budget terms associated with longwave destabilization even at SST < 10°C. Thus, if the MJO is a form of longwave-assisted self-aggregation, it is not one that is temperature critical, as is observed in some cases of radiative–convective equilibrium (RCE) self-aggregation. The second hypothesis is that the MJO is propagated by horizontal advection of column MSE. Inconsistent with this view, the simulated MJO survives reversal of meridional moisture gradients in the basic state and a striking role for horizontal MSE advection in its propagation energy budget cannot be detected. Rather, its eastward motion is balanced by vertical MSE advection reminiscent of gravity or Kelvin wave dynamics. These findings could suggest a tight relation between the MJO and classic equatorial waves, which would tend to challenge moisture mode views of MJO dynamics that assume horizontal moisture advection as the MJO’s propagator. The simulation suite provides new opportunities for testing predictions from MJO theory across a broad climate regime.

Full access
Sungduk Yu and Michael S. Pritchard


Ocean circulation responses to interhemispheric radiative imbalance can damp north–south migrations of the intertropical convergence zone (ITCZ) by reducing the burden on atmospheric energy transport. The role of the Atlantic meridional overturning circulation (AMOC) in such dynamics has not received much attention. Here, we present coupled climate modeling results that suggest AMOC responses are of first-order importance to muting ITCZ shift magnitudes as a pair of hemispherically asymmetric solar forcing bands is moved from equatorial to polar latitudes. The cross-equatorial energy transport response to the same amount of interhemispheric forcing becomes systematically more ocean-centric when higher latitudes are perturbed in association with strengthening AMOC responses. In contrast, the responses of the Pacific subtropical cell are not monotonic and cannot predict this variance in the ITCZ’s equilibrium position. Overall, these results highlight the importance of the meridional distribution of interhemispheric radiative imbalance and the rich buffering of internal feedbacks that occurs in dynamic versus thermodynamic (slab) ocean modeling experiments. Mostly, the results imply that the problem of developing a theory of ITCZ migration is entangled with that of understanding the AMOC’s response to hemispherically asymmetric radiative forcing—a difficult topic deserving of focused analysis across more climate models.

Full access
Michael S. Pritchard, Andrew B. G. Bush, and Shawn J. Marshall


To inform the ongoing development of earth system models that aim to incorporate interactive ice, the potential impact of interannual variability associated with synoptic variability and El Niño–Southern Oscillation (ENSO) at the Last Glacial Maximum (LGM) on the evolution of a large continental ice sheet is explored through a series of targeted numerical modeling experiments. Global and North American signatures of ENSO at the LGM are described based on a multidecadal paleoclimate simulation using an atmosphere–ocean general circulation model (AOGCM). Experiments in which a thermomechanical North American ice sheet model (ISM) was forced with persistent LGM ENSO composite anomaly maps derived from the AOGCM showed only modest ice sheet thickness sensitivity to ENSO teleconnections. In contrast, very high model sensitivity was found when North American climate variations were incorporated directly in the ISM as a looping interannual time series. Under this configuration, localized transient cold anomalies in the atmospheric record instigated substantial new ice formation through a dynamically mediated feedback at the ice sheet margin, altering the equilibrium geometry and resulting in a bulk 10% growth of the Laurentide ice sheet volume over 5 kyr.

Full access
Paul A. Levine, James T. Randerson, Yang Chen, Michael S. Pritchard, Min Xu, and Forrest M. Hoffman


El Niño–Southern Oscillation (ENSO) is an important driver of climate and carbon cycle variability in the Amazon. Sea surface temperature (SST) anomalies in the equatorial Pacific drive teleconnections with temperature directly through changes in atmospheric circulation. These circulation changes also impact precipitation and, consequently, soil moisture, enabling additional indirect effects on temperature through land–atmosphere coupling. To separate the direct influence of ENSO SST anomalies from the indirect effects of soil moisture, a mechanism-denial experiment was performed to decouple their variability in the Energy Exascale Earth System Model (E3SM) forced with observed SSTs from 1982 to 2016. Soil moisture variability was found to amplify and extend the effects of SST forcing on eastern Amazon temperature and carbon fluxes in E3SM. During the wet season, the direct, circulation-driven effect of ENSO SST anomalies dominated temperature and carbon cycle variability throughout the Amazon. During the following dry season, after ENSO SST anomalies had dissipated, soil moisture variability became the dominant driver in the east, explaining 67%–82% of the temperature difference between El Niño and La Niña years, and 85%–91% of the difference in carbon fluxes. These results highlight the need to consider the interdependence between temperature and hydrology when attributing the relative contributions of these factors to interannual variability in the terrestrial carbon cycle. Specifically, when offline models are forced with observations or reanalysis, the contribution of temperature may be overestimated when its own variability is modulated by hydrology via land–atmosphere coupling.

Open access
Bryce E. Harrop, Michael S. Pritchard, Hossein Parishani, Andrew Gettelman, Samson Hagos, Peter H. Lauritzen, L. Ruby Leung, Jian Lu, Kyle G. Pressel, and Koichi Sakaguchi


For the Community Atmosphere Model version 6 (CAM6), an adjustment is needed to conserve dry air mass. This adjustment exposes an inconsistency in how CAM6’s energy budget incorporates water—in CAM6 water in the vapor phase has energy, but condensed phases of water do not. When water vapor condenses, only its latent energy is retained in the model, while its remaining internal, potential, and kinetic energy are lost. A global fixer is used in the default CAM6 model to maintain global energy conservation, but locally the energy tendency associated with water changing phase violates the divergence theorem. This error in energy tendency is intrinsically tied to the water vapor tendency, and reaches its highest values in regions of heavy rainfall, where the error can be as high as 40 W m−2 annually averaged. Several possible changes are outlined within this manuscript that would allow CAM6 to satisfy the divergence theorem locally. These fall into one of two categories: 1) modifying the surface flux to balance the local atmospheric energy tendency and 2) modifying the local atmospheric tendency to balance the surface plus top-of-atmosphere energy fluxes. To gauge which aspects of the simulated climate are most sensitive to this error, the simplest possible change—where condensed water still does not carry energy and a local energy fixer is used in place of the global one—is implemented within CAM6. Comparing this experiment with the default configuration of CAM6 reveals precipitation, particularly its variability, to be highly sensitive to the energy budget formulation.

Significance Statement

This study examines and explains spurious regional sources and sinks of energy in a widely used climate model. These energy errors result from not tracking energy associated with water after it transitions from the vapor phase to either liquid or ice. Instead, the model used a global fixer to offset the energy tendency related to the energy sources and sinks associated with condensed water species. We replace this global fixer with a local one to examine the model sensitivity to the regional energy error and find a large sensitivity in the simulated hydrologic cycle. This work suggests that the underlying thermodynamic assumptions in the model should be revisited to build confidence in the model-simulated regional-scale water and energy cycles.

Restricted access