Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Michael S. Buban x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Michael S. Buban
and
Conrad L. Ziegler

Abstract

Motivated by high-resolution observations of small-scale atmospheric vortices along near-surface boundaries, this study presents a series of idealized simulations that attempt to replicate shear zones typical of drylines and other near-surface boundaries. The series of dry, constant potential temperature simulations are initialized with a north–south-oriented constant-vorticity shear zone and north–south periodic boundary conditions.

In all simulations, the shear zones develop wavelike perturbations that eventually roll up into discrete vortices. These vortices have features resembling those observed in many laboratory and numerical studies (i.e., instabilities developed into elliptical cores connected by vorticity braids that precess and contain pressure minima in their centers). To assess the instability mechanism, the results are compared to linear theory. Excellent agreement is found between predictions from linear theory for the wavenumber of maximum growth as a function of shear zone width and growth rate as a function of shear zone vorticity, suggesting to a very good first approximation, horizontal shearing instability (HSI) is responsible for the growth of initial small perturbations. It is also found that predictions of linear theory tend to extend well into the nonlinear regime.

Finally, preferred regions of cumulus formation are assessed by including moisture in four simulations. Maximum updrafts and simulated cumuli tend to form along the periphery of cores and/or along the braided regions adjacent to the cores. Because of the important modulating effect of misocyclone development via HSI and subsequent moisture transport, cumulus spacing and size/depth are also dependent on the shear zone width and vorticity.

Full access
Michael S. Buban
and
Conrad L. Ziegler

Abstract

This study presents a series of idealized simulations that attempt to replicate shear zones typical of drylines and other near-surface boundaries in the presence of horizontal virtual density gradients. The series of dry simulations are initialized to contain a north–south-oriented potential temperature gradient collocated with a constant-vorticity shear zone and employ north–south periodic boundary conditions. In all simulations, the shear zones frontogenetically collapse as wavelike perturbations develop that eventually roll up into discrete vortices. Convergence associated with the developing solenoidally forced secondary vertical circulation induces an accumulative shear zone contraction, which in turn increases the vertical vorticity of both the shear zone and the intensifying vortices, owing primarily to stretching that is partially offset by tilting of the vertical vorticity into the horizontal by the secondary circulation. The simulated vortices bear strong morphological resemblance to vortices reported in many earlier laboratory and numerical studies. To assess hypothesized baroclinic effects on the instability mechanism, the present results are compared to a previous study of barotropic horizontal shearing instability (HSI). Linear theory has been modified for the baroclinic cases by introducing a parametric model of frontal contraction, according to which the growth rate expressions incorporate model-prescribed, continuously varying shear zone widths. This modified parametric model is found to provide excellent agreement with the growth rates computed from the present simulations, suggesting that HSI can be extended to the baroclinic shear zone cases to a very good approximation over a range of near-surface boundary types.

Full access