Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Nai-Yu Wang x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Arief Sudradjat
,
Nai-Yu Wang
,
Kaushik Gopalan
, and
Ralph R. Ferraro

Abstract

A prototype generic, unified land surface classification and screening methodology for Global Precipitation Measurement (GPM)-era microwave land precipitation retrieval algorithms by using ancillary datasets is developed. As an alternative to the current radiometer-determined approach, the new methodology is shown to be promising in improving rain detection by providing better surface-cover-type information. The early prototype new surface screening scheme was applied to the current version of the Goddard profiling algorithm that is used for the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (GPROFV6). It has shown improvements in surface-cover-type classification and hence better precipitation retrieval comparisons with TRMM precipitation radar level-2 (L2) (2A25) data and the Global Precipitation Climatology Project (GPCP) version-2.1 (GPCPV2.1) datasets. The new ancillary data approach removes the current dependency of the screening step on relatively different satellite-specific channels and ensures the comparability and continuity of satellite-based precipitation products from different platforms. This is particularly important for advancing the current state of precipitation retrieval over land and for use in merged rainfall products.

Full access
Weixin Xu
,
Robert F. Adler
, and
Nai-Yu Wang

Abstract

This study quantifies the relationships among lightning activity, convective rainfall, and associated cloud properties on both convective-system scale (or storm scale) and satellite-pixel scale (~5 km) on the basis of 13 yr of Tropical Rainfall Measuring Mission measurements of rainfall, lightning, and clouds. Results show that lightning frequency is a good proxy to separate storms of different intensity, identify convective cores, and screen out false convective-core signatures in areas of thick anvil debris. Significant correlations are found between storm-scale lightning parameters and convective rainfall for systems over the southern United States, the focus area of the study. Storm-scale convective rainfall or heavy-precipitation area has the best correlation (coefficient r = 0.75–0.85) with lightning-flash area. It also increases linearly with increasing lightning-flash rate, although correlations between convective/heavy rainfall and lightning-flash rate are somewhat weaker (r = 0.55–0.75). Statistics further show that active lightning and intense precipitation are not well collocated on the pixel scale (5 km); for example, only 50% of the lightning flashes are coincident with heavy-rain cores, and more than 20% are distributed in light-rain areas. Simple positive correlations between lightning-flash rate and precipitation intensity are weak on the pixel scale. Lightning frequency and rain intensity have positive probabilistic relationships, however: the probability of heavy precipitation, especially on a coarser pixel scale (~20 km), increases with increasing lightning-flash density. Therefore, discrete thresholds of lightning density could be applied in a rainfall estimation scheme to assign precipitation in specific rate categories.

Full access
Weixin Xu
,
Robert F. Adler
, and
Nai-Yu Wang

Abstract

This paper describes and evaluates a satellite rainfall estimation technique that combines infrared and lightning information to estimate precipitation in deep convective systems. The algorithm is developed and tested using seven years (2002–08) of TRMM measurements over the southern United States during the warm season. Lightning information is coupled with a modified IR-based convective–stratiform technique (CST) and produces a lightning-enhanced CST (CSTL). Both the CST and CSTL are then applied to the training (2002–04) and independent (2005–08) datasets. In general, this study shows significant improvement over the IR rainfall estimates (rain area, intensity, and volume) by adding lightning information. The CST and CSTL display critical skill in estimating warm‐season precipitation and the performance is very stable. The CST can generally identify the heavy (convective) and light rain regions, while CSTL further identifies convective areas that are missed by CST and removes convective cores that are incorrectly defined by CST. Specifically, the CSTL improves the convective cell detection by 5% and reduces the convective false alarm rate by more than 30%. Similarly, CSTL substantially improves the CST in the overall estimate of instantaneous rainfall rates. For example, when compared with passive microwave estimates, CSTL increases the correlation coefficient by 30%, reduces the bias by 50%, and reduces RMSE by 25%. Both CST and CSTL reproduce the rain area and volume fairly accurately over a region, although both techniques show some degree of overestimation relative to radar estimates.

Full access