Search Results

You are looking at 1 - 10 of 12 items for :

  • Author or Editor: Nathaniel L. Bindoff x
  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All Modify Search
Neil J. Holbrook
and
Nathaniel L. Bindoff

Abstract

Climatological monthly upper-ocean temperature anomalies from the annual mean in the subtropical southwest Pacific Ocean show a characteristic out-of-phase relationship between the mixed layer and the underlying water. The mixed layer temperature anomalies in the subtropical gyre and midlatitudes are consistent in the spatial distribution and phase expected from solar radiation. However, below the mixed layer, the temperature anomalies between 10°S and 30°S are coherent throughout the water column to 450-m depth and are almost 180° out of phase with the mixed layer temperatures. This pattern of temperature anomalies describes vertical movements of the thermocline more closely linked to the seasonal variations in the wind stress curl.

To test this hypothesis, a one-dimensional linear vorticity model was forced using the Hellerman and Rosenstein monthly wind stresses across the entire width of the South Pacific Ocean. This simple wind-driven model has considerable skill in predicting the gyre-scale pattern of change in the phase and amplitude associated with thermocline variations in the subtropical gyre. Experiments, varying the Rossby wave speed, showed that a better representation is achieved with speeds of 2 to 2.5 times that observed from altimeter observations. Overall, the inclusion of long Rossby waves appears to be a very important contribution to the amplitude of the thermocline depth variations in the southwest Pacific. Furthermore, this important Rossby wave contribution is supported by the large-scale anomaly patterns obtained from more sophisticated three-dimensional dynamical ocean models.

Full access
Nathaniel L. Bindoff
and
Trevor J. Mcdougall

Abstract

Changes in atmospheric forcing can affect the subsurface water column of the ocean by three different mechanisms. First, warmed mixed-layer water that is subducted into the ocean interior will cause subsurface warming; second, the subducted surface water can be freshened through changes in evaporation and precipitation; and third, the properties at a given depth may be changed by the vertical displacement of isotherms and isohalines without changes of water masses. These vertical displacements of the water column can be caused either by changes in the rates of renewal of water masses or by dynamical changes (such as changes in wind stress). A method for analysing the subsurface temporal changes in hydrographic data is described in terms of these three processes: “pure warming,” “pure freshening,” and “pure heave.” Linear relations are derived for the relative strength of each process in terms of the observed changes of potential temperature and salinity in two different coordinate frames: (i) constant density surfaces, and (ii) isobaric surfaces.

Inverse methods are applied to three realizations of the SCORPIO section at 43°S in the Tasman Sea. These sections were obtained in 1967, and in the austral winter and summer of 1989 and 1990, respectively. This data is used to explore the relative strengths of surface warming, surface freshening, and heave of the water column. The six-month differences for this region show small changes in Sub-Antarctic mode water (SAMW) and are not characterized by any one process, whereas below the mode waters the observed differences are well described by the heave process. In contrast, the 23-year differences show significant changes in the properties of the water that flows into the Tasman Sea: SAMW (300-700 db) is well described by pure warming of near- surface waters, while the changes observed at the depth of the salinity minimum are consistent with pure freshening.

The observed changes in the interior of the ocean between adjacent seasons do not exhibit significant changes of water masses, consistent with the distance of this section from the outcrop region of the density surfaces of interest. For the 23-year differences, changed surface waters subducted into the ocean interior have sufficient time to influence the temperature-salinity correlations. The skill of our approach in discriminating between short-term changes (almost exclusively heave) and long-term changes associated with the subduction of changed surface waters is particularly encouraging. Although the observed changes could equally well be natural variability, they are qualitatively consistent with coupled numerical models of climate change in which surface waters are warmed and increased precipitation occurs south of the Sub-Antarctic Front.

Full access
Nathaniel L. Bindoff
and
Trevor J. McDougall

Abstract

In the Indian Ocean subtropical gyre, historical temperature, salinity, and oxygen data with a median date of 1962 are compared with a hydrographic section taken at a mean latitude of 32°S in October–November 1987. Significant basinwide changes in all three hydrographic fields are observed below the mixed layer. On isobaric surfaces the main changes are (i) a warming of the upper 900 dbar of the water column with a maximum change in the sectional mean of 0.5°C, (ii) a freshening between 500 and 1500 dbar with a maximum freshening of 0.05 psu, and (iii) a pronounced decrease in oxygen concentration between 300 and 1000 dbar.

Examination of water mass properties shows that very significant water mass changes have occurred. On isopycnals subantarctic mode water (SAMW) and Antarctic Intermediate Water (AAIW) have freshened and cooled. Both of these water masses are on average deeper in 1987. Using the analysis of Bindoff and McDougall (1994), the changes of temperature at constant depth and at constant density are used to show that the water mass changes can most simply be explained by a surface warming in the source region of SAMW and by increased precipitation in the source region of AAIW.

The decrease in oxygen concentration can be explained simply by a slight slowing of the subtropical gyre allowing more time for biological consumption to decrease the oxygen concentration by water parcel translation from the formation area to the observation point. Estimates show that over the last 25 years there is an apparent decrease of the gyre spin rate of about 20% at the depth levels of SAMW; the estimated spin rate change decreases almost linearly with greater depth to zero at the oxygen minimum in Indian Deep Water (IDW). Below IDW the observed changes in oxygen concentration (and also the changes of temperature and salinity) are associated with the upward movement of isopycnals with no significant water mass change. The differences in temperature and salinity in the SAMW and AAIW are consistent with the relatively young age of these water masses inferred from CFC data.

Full access
Ajitha Cyriac
,
Helen E. Phillips
,
Nathaniel L. Bindoff
, and
Kurt Polzin

Abstract

This study presents novel observational estimates of turbulent dissipation and mixing in a standing meander between the Southeast Indian Ridge and the Macquarie Ridge in the Southern Ocean. By applying a finescale parameterization on the temperature, salinity, and velocity profiles collected from Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats in the upper 1600 m, we estimated the intensity and spatial distribution of dissipation rate and diapycnal mixing along the float tracks and investigated the sources. The indirect estimates indicate strong spatial and temporal variability of turbulent mixing varying from O(10−6) to O(10−3) m2 s−1 in the upper 1600 m. Elevated turbulent mixing is mostly associated with the Subantarctic Front (SAF) and mesoscale eddies. In the upper 500 m, enhanced mixing is associated with downward-propagating wind-generated near-inertial waves as well as the interaction between cyclonic eddies and upward-propagating internal waves. In the study region, the local topography does not play a role in turbulent mixing in the upper part of the water column, which has similar values in profiles over rough and smooth topography. However, both remotely generated internal tides and lee waves could contribute to the upward-propagating energy. Our results point strongly to the generation of turbulent mixing through the interaction of internal waves and the intense mesoscale eddy field.

Open access
Ajitha Cyriac
,
Helen E. Phillips
,
Nathaniel L. Bindoff
, and
Ming Feng

Abstract

This study presents the characteristics and spatiotemporal structure of near-inertial waves and their interaction with Leeuwin Current eddies in the eastern south Indian Ocean as observed by Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats. The floats sampled the upper ocean during July–October 2013 with a frequency of eight profiles per day down to 1200 m. Near-inertial waves (NIWs) are found to be the dominant signal in the frequency spectra. Complex demodulation is used to estimate the amplitude and phase of the NIWs from the velocity profiles. The NIW energy propagated from the base of the mixed layer downward into the ocean interior, following beam characteristics of linear wave theory. We visually identified a total of 15 near-inertial internal wave packets from the wave amplitudes and phases with a mean vertical wavelength of 89 ± 63 m, a mean horizontal wavelength of 69 ± 85 km, a mean horizontal group velocity of 3 ± 2 cm s−1, and a mean vertical group velocity of 9 ± 7 m day−1. A strong near-inertial packet with a kinetic energy of 20–30 J m−3 found propagating below 700 m suggests that the NIWs can contribute to deep ocean mixing. A blue shift of 10%–15% in the energy spectrum of the NIWs is observed in the upper 1200 m as the floats move toward the equator. The impacts of mesoscale eddies on the characteristics and propagation of the observed NIWs are also investigated. The elevated near-inertial shear variance in anticyclonic eddies suggests trapping of NIWs near the surface. Cyclonic eddies, in contrast, were associated with weak near-inertial shear variance in the upper 400 m.

Open access
Ajitha Cyriac
,
Amelie Meyer
,
Helen E. Phillips
, and
Nathaniel L. Bindoff

Abstract

We characterize the internal wave field at a standing meander of the Antarctic Circumpolar Current (ACC) where strong winds, bathymetry, and a strong eddy field combine to form a dynamic environment for the generation and dissipation of internal waves. We use Electromagnetic Autonomous Profiling Explorer float data spanning 0–1600 m depth collected from a meander near the Macquarie Ridge, south of Australia. Of the 112 internal waves identified, 69% are associated with upward energy propagation. Most of the upward propagating waves (35%) are found near the Polar Front and are likely generated by mean flow–topography interactions. Generation by wind forcing at the sea surface is likely responsible for more than 40% of the downward propagating waves. Our results highlight advection of the waves and wave–mean flow interactions within the ACC as the dominant processes affecting the wave dynamics. The larger dissipation time scales of the waves compared to advection suggests they are likely to dissipate away from the generation site. We find that about 79% (66%) of the waves in cyclonic eddies (the Subantarctic Front) are influenced by horizontal strain, whereas 92% of the waves in the slower Polar Front are influenced by the relative vorticity of the background flow. There is energy exchange between internal waves and the mean flow, in both directions. The mean energy transfer (1.4 ± 1.0 × 10−11 m2 s−3) is from the mean flow to the waves in all dynamic regions except in anticyclonic eddies. The strongest energy exchange (5.0 ± 3.7 × 10−11 m2 s−3) is associated with waves in cyclonic eddies.

Open access
Amelie Meyer
,
Bernadette M. Sloyan
,
Kurt L. Polzin
,
Helen E. Phillips
, and
Nathaniel L. Bindoff

Abstract

A key remaining challenge in oceanography is the understanding and parameterization of small-scale mixing. Evidence suggests that topographic features play a significant role in enhancing mixing in the Southern Ocean. This study uses 914 high-resolution hydrographic profiles from novel EM-APEX profiling floats to investigate turbulent mixing north of the Kerguelen Plateau, a major topographic feature in the Southern Ocean. A shear–strain finescale parameterization is applied to estimate diapycnal diffusivity in the upper 1600 m of the ocean. The indirect estimates of mixing match direct microstructure profiler observations made simultaneously. It is found that mixing intensities have strong spatial and temporal variability, ranging from O(10−6) to O(10−3) m2 s−1. This study identifies topographic roughness, current speed, and wind speed as the main factors controlling mixing intensity. Additionally, the authors find strong regional variability in mixing dynamics and enhanced mixing in the Antarctic Circumpolar Current frontal region. This enhanced mixing is attributed to dissipating internal waves generated by the interaction of the Antarctic Circumpolar Current and the topography of the Kerguelen Plateau. Extending the mixing observations from the Kerguelen region to the entire Southern Ocean, this study infers a large water mass transformation rate of 17 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) across the boundary of Antarctic Intermediate Water and Upper Circumpolar Deep Water in the Antarctic Circumpolar Current. This work suggests that the contribution of mixing to the Southern Ocean overturning circulation budget is particularly significant in fronts.

Full access
Ajitha Cyriac
,
Helen E. Phillips
,
Nathaniel L. Bindoff
,
Huabin Mao
, and
Ming Feng

Abstract

This study investigates the spatiotemporal variability of turbulent mixing in the eastern south Indian Ocean using a collection of data from electromagnetic autonomous profiling explorer (EM-APEX) profiling floats, shipboard CTD, and microstructure profilers. The floats collected 1566 profiles of temperature, salinity, and horizontal velocity data down to 1200 m over a period of about four months. A finescale parameterization is applied to the float and CTD data to estimate turbulent mixing. Elevated mixing is observed in the upper ocean, over bottom topography, and in mesoscale eddies. Mixing is enhanced in the anticyclonic eddies due to trapped near-inertial waves within the eddy. We found that cyclonic eddies contribute to turbulent mixing in the depth range of 500–1000 m, which is associated with downward-propagating internal waves. The mean diapycnal diffusivity over 250–500-m depth is O(10−6) m2 s−1, and it increases to O(10−5) m2 s−1 in 500–1000 m in cyclonic eddies. The turbulent mixing in this region has implications for water-mass transformation and large-scale circulation. Higher diffusivity [O(10−5) m2 s−1] is observed in the Antarctic Intermediate Water (AAIW) layer in cyclonic eddies, whereas weak diffusivity is observed in the Subantarctic Mode Water (SAMW) layer [O(10−6) m2 s−1]. Counterintuitively, then, the SAMW water-mass properties are strongly affected in cyclonic eddies, whereas the AAIW layer is less affected. Comparatively high diffusivity at the location of the South Indian Countercurrent (SICC) jets suggests there are wave–mean flow interactions in addition to the wave–eddy interactions that warrant further investigation.

Open access
Jan Jaap Meijer
,
Helen E. Phillips
,
Nathaniel L. Bindoff
,
Stephen R. Rintoul
, and
Annie Foppert

Abstract

Meanders formed where the Antarctic Circumpolar Current (ACC) interacts with topography have been identified as dynamical hot spots, characterized by enhanced eddy energy, momentum transfer, and cross-front exchange. However, few studies have used observations to diagnose the dynamics of ACC standing meanders. We use a synoptic hydrographic survey and satellite altimetry to explore the momentum and vorticity balance of a Subantarctic Front standing meander, downstream of the Southeast Indian Ridge. Along-stream anomalies of temperature in the upper ocean (150–600 m) show along-stream cooling entering the surface trough and along-stream warming entering the surface crest, while warming is observed from trough to crest in the deeper ocean (600–1500 m). Advection of relative vorticity is balanced by vortex stretching, as found in model studies of meandering currents. Meander curvature is sufficiently large that the flow is in gradient wind balance, resulting in ageostrophic horizontal divergence. This drives downwelling of cooler water along isopycnals entering the surface trough and upwelling of warmer water entering the surface crest, consistent with the observed evolution of temperature anomalies in the upper ocean. Progressive along-stream warming observed between 600 and 1500 m likely reflects cyclogenesis in the deep ocean. Vortex stretching couples the upper and lower water column, producing a low pressure at depth between surface trough and crest and cyclonic flow that carries cold water equatorward in the surface trough and warm water poleward in the surface crest (poleward heat flux). The results highlight gradient–wind balance and cyclogenesis as central to dynamics of standing meanders and their critical role in the ACC momentum and vorticity balance.

Significance Statement

The Antarctic Circumpolar Current (ACC) in the Southern Ocean is a nearly zonal current that encircles Antarctica. It acts as a barrier between warmer water equatorward and colder water poleward. In a few regions where the current encounters strong topographic changes, the current meanders and opens a pathway for heat to travel across the ACC toward Antarctica. We surveyed a meander in the ACC and examined the along-stream change of temperature. In the upper ocean, temperature changes are caused by a vertical circulation, bringing cool water down when entering the surface trough (the part of the meander closest to the equator), and warm water up when exiting the surface trough and entering the surface crest. At depth, cold water is transported equatorward in the surface trough and warm water poleward in the surface crest, leading to a net transport of heat poleward. This study highlights the importance of the secondary circulation within a meander for generating cross-ACC flows and moving heat toward Antarctica.

Open access
Christopher J. Roach
,
Helen E. Phillips
,
Nathaniel L. Bindoff
, and
Stephen R. Rintoul

Abstract

This study presents a unique array of velocity profiles from Electromagnetic Autonomous Profiling Explorer (EM-APEX) profiling floats in the Antarctic Circumpolar Current (ACC) north of Kerguelen. The authors use these profiles to examine the nature of Ekman spirals, formed by the action of the wind on the ocean’s surface, in light of Ekman’s classical linear theory and more recent enhancements. Vertical decay scales of the Ekman spirals were estimated independently from current amplitude and rotation. Assuming a vertically uniform geostrophic current, decay scales from the Ekman current heading were twice as large as those from the current speed decay, indicating a compressed spiral, consistent with prior observations and violating the classical theory. However, if geostrophic shear is accurately removed, the observed Ekman spiral is as predicted by classical theory and decay scales estimated from amplitude decay and rotation converge toward a common value. No statistically robust relationship is found between stratification and Ekman decay scales. The results indicate that compressed spirals observed in the Southern Ocean arise from aliasing of depth-varying geostrophic currents into the Ekman spiral, as opposed to surface trapping of Ekman currents associated with stratification, and extends the geographical area of similar results from Drake Passage (Polton et al. 2013). Accounting for this effect, the authors find that constant viscosity Ekman models offer a reasonable description of momentum mixing into the upper ocean in the ACC north of Kerguelen. These results demonstrate the effectiveness of a new method and provide additional evidence that the same processes are active for the entire Southern Ocean.

Full access