Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Navid C. Constantinou x
  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All Modify Search
Navid C. Constantinou


Eddy saturation refers to a regime in which the total volume transport of an oceanic current is insensitive to the wind stress strength. Baroclinicity is currently believed to be the key to the development of an eddy-saturated state. In this paper, it is shown that eddy saturation can also occur in a purely barotropic flow over topography, without baroclinicity. Thus, eddy saturation is a fundamental property of barotropic dynamics above topography. It is demonstrated that the main factor controlling the appearance or not of eddy-saturated states in the barotropic setting is the structure of geostrophic contours, that is, the contours of f/H (the ratio of the Coriolis parameter to the ocean’s depth). Eddy-saturated states occur when the geostrophic contours are open, that is, when the geostrophic contours span the whole zonal extent of the domain. This minimal requirement for eddy-saturated states is demonstrated using numerical integrations of a single-layer quasigeostrophic flow over two different topographies characterized by either open or closed geostrophic contours with parameter values loosely inspired by the Southern Ocean. In this setting, transient eddies are produced through a barotropic–topographic instability that occurs because of the interaction of the large-scale zonal flow with the topography. By studying this barotropic–topographic instability insight is gained on how eddy-saturated states are established.

Full access
Till J. W. Wagner, Ian Eisenman, Amanda M. Ceroli, and Navid C. Constantinou


Arctic icebergs, unconstrained sea ice floes, oil slicks, mangrove drifters, lost cargo containers, and other flotsam are known to move at 2%–4% of the prevailing wind velocity relative to the water, despite vast differences in the material properties, shapes, and sizes of objects. Here, we revisit the roles of density, aspect ratio, and skin and form drag in determining how an object is driven by winds and water currents. Idealized theoretical considerations show that although substantial differences exist for end members of the parameter space (either very thin or thick and very light or dense objects), most realistic cases of floating objects drift at approximately 3% of the free-stream wind velocity (measured outside an object’s surface boundary layer) relative to the water. This relationship, known as a long-standing rule of thumb for the drift of various types of floating objects, arises from the square root of the ratio of the density of air to that of water. We support our theoretical findings with flume experiments using floating objects with a range of densities and shapes.

Restricted access