Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Navid C. Constantinou x
  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All Modify Search
Navid C. Constantinou

Abstract

Eddy saturation refers to a regime in which the total volume transport of an oceanic current is insensitive to the wind stress strength. Baroclinicity is currently believed to be the key to the development of an eddy-saturated state. In this paper, it is shown that eddy saturation can also occur in a purely barotropic flow over topography, without baroclinicity. Thus, eddy saturation is a fundamental property of barotropic dynamics above topography. It is demonstrated that the main factor controlling the appearance or not of eddy-saturated states in the barotropic setting is the structure of geostrophic contours, that is, the contours of f/H (the ratio of the Coriolis parameter to the ocean’s depth). Eddy-saturated states occur when the geostrophic contours are open, that is, when the geostrophic contours span the whole zonal extent of the domain. This minimal requirement for eddy-saturated states is demonstrated using numerical integrations of a single-layer quasigeostrophic flow over two different topographies characterized by either open or closed geostrophic contours with parameter values loosely inspired by the Southern Ocean. In this setting, transient eddies are produced through a barotropic–topographic instability that occurs because of the interaction of the large-scale zonal flow with the topography. By studying this barotropic–topographic instability insight is gained on how eddy-saturated states are established.

Full access
Dhruv Bhagtani
,
Andrew McC. Hogg
,
Ryan M. Holmes
, and
Navid C. Constantinou

Abstract

Gyres are central features of large-scale ocean circulation and are involved in transporting tracers such as heat, nutrients, and carbon dioxide within and across ocean basins. Traditionally, the gyre circulation is thought to be driven by surface winds and quantified via Sverdrup balance, but it has been proposed that surface buoyancy fluxes may also contribute to gyre forcing. Through a series of eddy-permitting global ocean model simulations with perturbed surface forcing, the relative contribution of wind stress and surface heat flux forcing to the large-scale ocean circulation is investigated, focusing on the subtropical gyres. In addition to gyre strength being linearly proportional to wind stress, it is shown that the gyre circulation is strongly impacted by variations in the surface heat flux (specifically, its meridional gradient) through a rearrangement of the ocean’s buoyancy structure. On shorter time scales (∼10 years), the gyre circulation anomalies are proportional to the magnitude of the surface heat flux gradient perturbation, with up to ∼0.15 Sv (1 Sv ≡ 106 m3 s−1) anomaly induced per watt per square meter change in the surface heat flux. On time scales longer than a decade, the gyre response to surface buoyancy flux gradient perturbations becomes nonlinear as ocean circulation anomalies feed back onto the buoyancy structure induced by the surface buoyancy fluxes. These interactions complicate the development of a buoyancy-driven theory for the gyres to complement the Sverdrup relation. The flux-forced simulations underscore the importance of surface buoyancy forcing in steering the large-scale ocean circulation.

Significance Statement

Ocean gyres are large swirling circulation features that redistribute heat across ocean basins. It is commonly believed that surface winds are the sole driver of ocean gyres, but recent literature suggests that other mechanisms could also be influential. We perform a series of numerical simulations in which we artificially change either the winds or the heating at the ocean’s surface and investigate how each factor independently affects the ocean gyres. We find that gyres are steered by both winds and surface heating, and that the ocean circulation responds differently to heating on short and long time scales. In addition, the circulation depends on where the heating is applied at the ocean’s surface. Through these simulations, we argue that a complete theory about ocean gyres must consider heating at the ocean’s surface as a possible driver, in addition to the winds.

Restricted access
Till J. W. Wagner
,
Ian Eisenman
,
Amanda M. Ceroli
, and
Navid C. Constantinou

Abstract

Arctic icebergs, unconstrained sea ice floes, oil slicks, mangrove drifters, lost cargo containers, and other flotsam are known to move at 2%–4% of the prevailing wind velocity relative to the water, despite vast differences in the material properties, shapes, and sizes of objects. Here, we revisit the roles of density, aspect ratio, and skin and form drag in determining how an object is driven by winds and water currents. Idealized theoretical considerations show that although substantial differences exist for end members of the parameter space (either very thin or thick and very light or dense objects), most realistic cases of floating objects drift at approximately 3% of the free-stream wind velocity (measured outside an object’s surface boundary layer) relative to the water. This relationship, known as a long-standing rule of thumb for the drift of various types of floating objects, arises from the square root of the ratio of the density of air to that of water. We support our theoretical findings with flume experiments using floating objects with a range of densities and shapes.

Full access
Ellie Q. Y. Ong
,
Edward Doddridge
,
Navid C. Constantinou
,
Andrew McC. Hogg
, and
Matthew H. England

Abstract

The structure of the Antarctic Slope Current at the continental shelf is crucial in governing the poleward transport of warm water. Canyons on the continental slope may provide a pathway for warm water to cross the slope current and intrude onto the continental shelf underneath ice shelves, which can increase rates of ice shelf melting, leading to reduced buttressing of ice shelves, accelerating glacial flow and hence increased sea level rise. Observations and modelling studies of the Antarctic Slope Current and cross-shelf warm water intrusions are limited, particularly in the East Antarctica region. To explore this topic, an idealised configuration of the Antarctic Slope Current is developed, using an eddy-resolving isopycnal model that emulates the dynamics and topography of the East Antarctic sector. Warm water intrusions via canyons are found to occur in discrete episodes of large onshore flow induced by eddies, even in the absence of any temporal variability in external forcings, demonstrating the intrinsic nature of these intrusions to the slope current system. Canyon width is found to play a key role in modulating cross-shelf exchanges; warm water transport through narrower canyons is more irregular than transport through wider canyons. The intrinsically episodic cross-shelf transport is found to be driven by feedbacks between wind energy input and eddy generation in the Antarctic Slope Current. Improved understanding of the intrinsic variability of warm water intrusions can help guide future observational and modelling studies in the analysis of eddy impacts on Antarctic shelf circulation.

Restricted access