Search Results
You are looking at 1 - 9 of 9 items for :
- Author or Editor: Nicholas J. Lutsko x
- Journal of Climate x
- Refine by Access: All Content x
Abstract
Increases in the severity of heat stress extremes are potentially one of the most impactful consequences of climate change, affecting human comfort, productivity, health, and mortality in many places on Earth. Heat stress results from a combination of elevated temperature and humidity, but the relative contributions of each of these to heat stress changes have yet to be quantified. Here, conditions for the baseline specific humidity are derived for when specific humidity or temperature dominates heat stress changes, as measured using the equivalent potential temperature (θ E ). Separate conditions are derived over ocean and over land, in addition to a condition for when relative humidity changes make a larger contribution than the Clausius–Clapeyron response at fixed relative humidity. These conditions are used to interpret the θ E responses in transient warming simulations with an ensemble of models participating in phase 6 of the Climate Model Intercomparison Project. The regional pattern of θ E changes is shown to be largely determined by the pattern of specific humidity changes, with the pattern of temperature changes playing a secondary role. This holds whether considering changes in seasonal-mean θ E or in extreme (98th-percentile) θ E events, and uncertainty in the response of specific humidity to warming is shown to be the leading source of uncertainty in the θ E response at most land locations. Finally, analysis of ERA5 data demonstrates that the pattern of observed θ E changes is also well explained by the pattern of specific humidity changes. These results demonstrate that understanding regional changes in specific humidity is largely sufficient for understanding regional changes in heat stress.
Abstract
Increases in the severity of heat stress extremes are potentially one of the most impactful consequences of climate change, affecting human comfort, productivity, health, and mortality in many places on Earth. Heat stress results from a combination of elevated temperature and humidity, but the relative contributions of each of these to heat stress changes have yet to be quantified. Here, conditions for the baseline specific humidity are derived for when specific humidity or temperature dominates heat stress changes, as measured using the equivalent potential temperature (θ E ). Separate conditions are derived over ocean and over land, in addition to a condition for when relative humidity changes make a larger contribution than the Clausius–Clapeyron response at fixed relative humidity. These conditions are used to interpret the θ E responses in transient warming simulations with an ensemble of models participating in phase 6 of the Climate Model Intercomparison Project. The regional pattern of θ E changes is shown to be largely determined by the pattern of specific humidity changes, with the pattern of temperature changes playing a secondary role. This holds whether considering changes in seasonal-mean θ E or in extreme (98th-percentile) θ E events, and uncertainty in the response of specific humidity to warming is shown to be the leading source of uncertainty in the θ E response at most land locations. Finally, analysis of ERA5 data demonstrates that the pattern of observed θ E changes is also well explained by the pattern of specific humidity changes. These results demonstrate that understanding regional changes in specific humidity is largely sufficient for understanding regional changes in heat stress.
Abstract
The relative contributions of the meridional gradients in insolation and in longwave optical depth (caused by gradients in water vapor) to the equator-to-pole temperature difference, and to Earth’s climate in general, have not been quantified before. As a first step to understanding these contributions, this study investigates simulations with an idealized general circulation model in which the gradients are eliminated individually or jointly, while keeping the global means fixed. The insolation gradient has a larger influence on the model’s climate than the gradient in optical depth, but both make sizeable contributions and the changes are largest when the gradients are reduced simultaneously. Removing either gradient increases global-mean surface temperature due to an increase in the tropospheric lapse rate, while the meridional surface temperature gradients are reduced. “Global warming” experiments with these configurations suggest similar climate sensitivities; however, the warming patterns and feedbacks are quite different. Changes in the meridional energy fluxes lead to polar amplification of the response in all but the setup in which both gradients are removed. The lapse-rate feedback acts to polar amplify the responses in the Earth-like setup, but is uniformly negative in the other setups. Simple models are used to interpret the results, including a prognostic model that can accurately predict regional surface temperatures, given the meridional distributions of insolation and longwave optical depths.
Abstract
The relative contributions of the meridional gradients in insolation and in longwave optical depth (caused by gradients in water vapor) to the equator-to-pole temperature difference, and to Earth’s climate in general, have not been quantified before. As a first step to understanding these contributions, this study investigates simulations with an idealized general circulation model in which the gradients are eliminated individually or jointly, while keeping the global means fixed. The insolation gradient has a larger influence on the model’s climate than the gradient in optical depth, but both make sizeable contributions and the changes are largest when the gradients are reduced simultaneously. Removing either gradient increases global-mean surface temperature due to an increase in the tropospheric lapse rate, while the meridional surface temperature gradients are reduced. “Global warming” experiments with these configurations suggest similar climate sensitivities; however, the warming patterns and feedbacks are quite different. Changes in the meridional energy fluxes lead to polar amplification of the response in all but the setup in which both gradients are removed. The lapse-rate feedback acts to polar amplify the responses in the Earth-like setup, but is uniformly negative in the other setups. Simple models are used to interpret the results, including a prognostic model that can accurately predict regional surface temperatures, given the meridional distributions of insolation and longwave optical depths.
Abstract
The relationship between climate models’ internal variability and their response to external forcings is investigated. Frequency-dependent regressions are performed between the outgoing top-of-atmosphere (TOA) energy fluxes and the global-mean surface temperature in the preindustrial control simulations of the CMIP5 archive. Two distinct regimes are found. At subdecadal frequencies the surface temperature and the outgoing shortwave flux are in quadrature, while the outgoing longwave flux is linearly related to temperature and acts as a negative feedback on temperature perturbations. On longer time scales the outgoing shortwave and longwave fluxes are both linearly related to temperature, with the longwave continuing to act as a negative feedback and the shortwave acting as a positive feedback on temperature variability. In addition to the different phase relationships, the two regimes can also be seen in estimates of the coherence and of the frequency-dependent regression coefficients. The frequency-dependent regression coefficients for the total cloudy-sky flux on time scales of 2.5 to 3 years are found to be strongly (r 2 > 0.6) related to the models’ equilibrium climate sensitivities (ECSs), suggesting a potential “emergent constraint” for Earth’s ECS. However, O(100) years of data are required for this relationship to become robust. A simple model for Earth’s surface temperature variability and its relationship to the TOA fluxes is used to provide a physical interpretation of these results.
Abstract
The relationship between climate models’ internal variability and their response to external forcings is investigated. Frequency-dependent regressions are performed between the outgoing top-of-atmosphere (TOA) energy fluxes and the global-mean surface temperature in the preindustrial control simulations of the CMIP5 archive. Two distinct regimes are found. At subdecadal frequencies the surface temperature and the outgoing shortwave flux are in quadrature, while the outgoing longwave flux is linearly related to temperature and acts as a negative feedback on temperature perturbations. On longer time scales the outgoing shortwave and longwave fluxes are both linearly related to temperature, with the longwave continuing to act as a negative feedback and the shortwave acting as a positive feedback on temperature variability. In addition to the different phase relationships, the two regimes can also be seen in estimates of the coherence and of the frequency-dependent regression coefficients. The frequency-dependent regression coefficients for the total cloudy-sky flux on time scales of 2.5 to 3 years are found to be strongly (r 2 > 0.6) related to the models’ equilibrium climate sensitivities (ECSs), suggesting a potential “emergent constraint” for Earth’s ECS. However, O(100) years of data are required for this relationship to become robust. A simple model for Earth’s surface temperature variability and its relationship to the TOA fluxes is used to provide a physical interpretation of these results.
Abstract
The factors controlling the present-day pattern of temperature variance are poorly understood. In particular, it is unclear why the variance of wintertime near-surface temperatures on daily and synoptic time scales is roughly twice as high over North America as over Eurasia. In this study, continental geometry’s role in shaping regional wintertime temperature variance is investigated using idealized climate model simulations run with midlatitude continents of different shapes. An isolated, rectangular midlatitude continent suggests that in the absence of other geographic features, the highest temperature variance will be located in the northwest of the continent, roughly collocated with the region of largest meridional temperature gradients, and just north of the maximum near-surface wind speeds. Simulations with other geometries, mimicking key features of North America and Eurasia, investigate the impacts of continental length and width, sloping coastlines, and inland bodies of water on regional temperature variance. The largest effect comes from tapering the northwest corner of the continent, similar to Eurasia, which substantially reduces the maximum temperature variance. Narrower continents have smaller temperature variance in isolation, implying that the high variances over North America must be due to the nonlocal influence of stationary waves. Support for this hypothesis is provided by simulations with two midlatitude continents, which show how continental geometry and stationary waves can combine to shape regional temperature variance.
Significance Statement
Wintertime temperature variance over North America is roughly twice as high as over Eurasia, but the reasons for this are unknown. Here we use idealized climate model simulations to investigate how continental geometry shapes regional temperature variance. We find that the smaller variance over Eurasia is largely due to the tapering of its northwest coast, which weakens temperature gradients in the continental interior. Our simulations also suggest that in isolation a narrow continent, like North America, should have weak temperature variance, implying that stationary waves are responsible for the high variance over North America. Understanding the controls on regional temperature variance is important for interpreting present-day winter climates and how these will change in the future.
Abstract
The factors controlling the present-day pattern of temperature variance are poorly understood. In particular, it is unclear why the variance of wintertime near-surface temperatures on daily and synoptic time scales is roughly twice as high over North America as over Eurasia. In this study, continental geometry’s role in shaping regional wintertime temperature variance is investigated using idealized climate model simulations run with midlatitude continents of different shapes. An isolated, rectangular midlatitude continent suggests that in the absence of other geographic features, the highest temperature variance will be located in the northwest of the continent, roughly collocated with the region of largest meridional temperature gradients, and just north of the maximum near-surface wind speeds. Simulations with other geometries, mimicking key features of North America and Eurasia, investigate the impacts of continental length and width, sloping coastlines, and inland bodies of water on regional temperature variance. The largest effect comes from tapering the northwest corner of the continent, similar to Eurasia, which substantially reduces the maximum temperature variance. Narrower continents have smaller temperature variance in isolation, implying that the high variances over North America must be due to the nonlocal influence of stationary waves. Support for this hypothesis is provided by simulations with two midlatitude continents, which show how continental geometry and stationary waves can combine to shape regional temperature variance.
Significance Statement
Wintertime temperature variance over North America is roughly twice as high as over Eurasia, but the reasons for this are unknown. Here we use idealized climate model simulations to investigate how continental geometry shapes regional temperature variance. We find that the smaller variance over Eurasia is largely due to the tapering of its northwest coast, which weakens temperature gradients in the continental interior. Our simulations also suggest that in isolation a narrow continent, like North America, should have weak temperature variance, implying that stationary waves are responsible for the high variance over North America. Understanding the controls on regional temperature variance is important for interpreting present-day winter climates and how these will change in the future.
Abstract
Motivated by observations of southward ocean heat transport (OHT) in the northern Indian Ocean during summer, the role of the ocean in modulating monsoon circulations is explored by coupling an atmospheric model to a slab ocean with an interactive representation of OHT and an idealized subtropical continent. Southward OHT by the cross-equatorial cells is caused by Ekman flow driven by southwesterly monsoon winds in the summer months, cooling sea surface temperatures (SSTs) south of the continent. This increases the reversed meridional surface gradient of moist static energy, shifting the precipitation maximum over the land and strengthening the monsoonal circulation, in the sense of enhancing the vertical wind shear. However, the atmosphere’s cross-equatorial meridional overturning circulation is also weakened by the presence of southward OHT, as the atmosphere is required to transport less energy across the equator. The sensitivity of these effects to varying the strength of the OHT, fixing the OHT at its annual-mean value, and to removing the land is explored. Comparisons with more realistic models suggest that the idealized model used in this study produces a reasonable representation of the effect of OHT on SSTs equatorward of subtropical continents, and hence can be used to study the role of OHT in shaping monsoon circulations on Earth.
Abstract
Motivated by observations of southward ocean heat transport (OHT) in the northern Indian Ocean during summer, the role of the ocean in modulating monsoon circulations is explored by coupling an atmospheric model to a slab ocean with an interactive representation of OHT and an idealized subtropical continent. Southward OHT by the cross-equatorial cells is caused by Ekman flow driven by southwesterly monsoon winds in the summer months, cooling sea surface temperatures (SSTs) south of the continent. This increases the reversed meridional surface gradient of moist static energy, shifting the precipitation maximum over the land and strengthening the monsoonal circulation, in the sense of enhancing the vertical wind shear. However, the atmosphere’s cross-equatorial meridional overturning circulation is also weakened by the presence of southward OHT, as the atmosphere is required to transport less energy across the equator. The sensitivity of these effects to varying the strength of the OHT, fixing the OHT at its annual-mean value, and to removing the land is explored. Comparisons with more realistic models suggest that the idealized model used in this study produces a reasonable representation of the effect of OHT on SSTs equatorward of subtropical continents, and hence can be used to study the role of OHT in shaping monsoon circulations on Earth.
Abstract
The impact of large-scale orography on wintertime near-surface (850 hPa) temperature variability on daily and synoptic time scales (from days to weeks) in the Northern Hemisphere is investigated. Using a combination of theory, idealized modeling work, and simulations with a comprehensive climate model, it is shown that large-scale orography reduces upstream temperature gradients, in turn reducing upstream temperature variability, and enhances downstream temperature gradients, enhancing downstream temperature variability. Hence, the presence of the Rockies on the western edge of the North American continent increases temperature gradients over North America and, consequently, increases North American temperature variability. By contrast, the presence of the Tibetan Plateau and the Himalayas on the eastern edge of the Eurasian continent damps temperature variability over most of Eurasia. However, Tibet and the Himalayas also interfere with the downstream development of storms in the North Pacific storm track, and thus damp temperature variability over North America, by approximately as much as the Rockies enhance it. Large-scale orography is also shown to impact the skewness of downstream temperature distributions, as temperatures to the north of the enhanced temperature gradients are more positively skewed while temperatures to the south are more negatively skewed. This effect is most clearly seen in the northwest Pacific, off the east coast of Japan.
Abstract
The impact of large-scale orography on wintertime near-surface (850 hPa) temperature variability on daily and synoptic time scales (from days to weeks) in the Northern Hemisphere is investigated. Using a combination of theory, idealized modeling work, and simulations with a comprehensive climate model, it is shown that large-scale orography reduces upstream temperature gradients, in turn reducing upstream temperature variability, and enhances downstream temperature gradients, enhancing downstream temperature variability. Hence, the presence of the Rockies on the western edge of the North American continent increases temperature gradients over North America and, consequently, increases North American temperature variability. By contrast, the presence of the Tibetan Plateau and the Himalayas on the eastern edge of the Eurasian continent damps temperature variability over most of Eurasia. However, Tibet and the Himalayas also interfere with the downstream development of storms in the North Pacific storm track, and thus damp temperature variability over North America, by approximately as much as the Rockies enhance it. Large-scale orography is also shown to impact the skewness of downstream temperature distributions, as temperatures to the north of the enhanced temperature gradients are more positively skewed while temperatures to the south are more negatively skewed. This effect is most clearly seen in the northwest Pacific, off the east coast of Japan.
Abstract
The influence of the El Niño-Southern Oscillation (ENSO) in the Asian monsoon region can persist through the post-ENSO summer, after the Sea Surface Temperature (SST) anomalies in the tropical Pacific have dissipated. The long persistence of coherent post-ENSO anomalies is caused by a positive feedback due to interbasin ocean-atmospheric coupling, known as the Indo-Western Pacific Ocean Capacitor (IPOC) effect, though the feedback mechanism itself does not necessarily rely on the antecedence of ENSO events, suggesting the potential for substantial internal variability independent of ENSO. To investigate the respective role of ENSO forcing and non-ENSO internal variability, we conduct ensemble “forecast” experiments with a full-physics, globally coupled atmosphere-ocean model initialized from a multi-decadal tropical Pacific pacemaker simulation. The leading mode of internal variability as represented by the forecast-ensemble spread resembles the post-ENSO IPOC, despite the absence of antecedent ENSO forcing by design. The persistent atmospheric and oceanic anomalies in the leading mode highlight the positive feedback mechanism in the internal variability. The large sample size afforded by the ensemble spread allows us to identify robust non-ENSO precursors of summer IPOC variability, including a cool SST patch over the tropical Northwestern Pacific, a warming patch in the tropical Northern Atlantic, and downwelling oceanic Rossby waves in the tropical Indian Ocean south of the equator. The pathways by which the precursors develop into the summer IPOC mode and the implications for improved predictability are discussed.
Abstract
The influence of the El Niño-Southern Oscillation (ENSO) in the Asian monsoon region can persist through the post-ENSO summer, after the Sea Surface Temperature (SST) anomalies in the tropical Pacific have dissipated. The long persistence of coherent post-ENSO anomalies is caused by a positive feedback due to interbasin ocean-atmospheric coupling, known as the Indo-Western Pacific Ocean Capacitor (IPOC) effect, though the feedback mechanism itself does not necessarily rely on the antecedence of ENSO events, suggesting the potential for substantial internal variability independent of ENSO. To investigate the respective role of ENSO forcing and non-ENSO internal variability, we conduct ensemble “forecast” experiments with a full-physics, globally coupled atmosphere-ocean model initialized from a multi-decadal tropical Pacific pacemaker simulation. The leading mode of internal variability as represented by the forecast-ensemble spread resembles the post-ENSO IPOC, despite the absence of antecedent ENSO forcing by design. The persistent atmospheric and oceanic anomalies in the leading mode highlight the positive feedback mechanism in the internal variability. The large sample size afforded by the ensemble spread allows us to identify robust non-ENSO precursors of summer IPOC variability, including a cool SST patch over the tropical Northwestern Pacific, a warming patch in the tropical Northern Atlantic, and downwelling oceanic Rossby waves in the tropical Indian Ocean south of the equator. The pathways by which the precursors develop into the summer IPOC mode and the implications for improved predictability are discussed.
Abstract
The precise mechanisms driving Arctic amplification are still under debate. Previous attribution methods compute the vertically uniform temperature change required to balance the top-of-atmosphere energy imbalance caused by each forcing and feedback, with any departures from vertically uniform warming collected into the lapse-rate feedback. We propose an alternative attribution method using a single-column model that accounts for the forcing dependence of high-latitude lapse-rate changes. We examine this method in an idealized general circulation model (GCM), finding that, even though the column-integrated carbon dioxide (CO2) forcing and water vapor feedback are stronger in the tropics, they contribute to polar-amplified surface warming as they produce bottom-heavy warming in high latitudes. A separation of atmospheric temperature changes into local and remote contributors shows that, in the absence of polar surface forcing (e.g., sea ice retreat), changes in energy transport are primarily responsible for the polar-amplified pattern of warming. The addition of surface forcing substantially increases polar surface warming and reduces the contribution of atmospheric dry static energy transport to the warming. This physically based attribution method can be applied to comprehensive GCMs to provide a clearer view of the mechanisms behind Arctic amplification.
Abstract
The precise mechanisms driving Arctic amplification are still under debate. Previous attribution methods compute the vertically uniform temperature change required to balance the top-of-atmosphere energy imbalance caused by each forcing and feedback, with any departures from vertically uniform warming collected into the lapse-rate feedback. We propose an alternative attribution method using a single-column model that accounts for the forcing dependence of high-latitude lapse-rate changes. We examine this method in an idealized general circulation model (GCM), finding that, even though the column-integrated carbon dioxide (CO2) forcing and water vapor feedback are stronger in the tropics, they contribute to polar-amplified surface warming as they produce bottom-heavy warming in high latitudes. A separation of atmospheric temperature changes into local and remote contributors shows that, in the absence of polar surface forcing (e.g., sea ice retreat), changes in energy transport are primarily responsible for the polar-amplified pattern of warming. The addition of surface forcing substantially increases polar surface warming and reduces the contribution of atmospheric dry static energy transport to the warming. This physically based attribution method can be applied to comprehensive GCMs to provide a clearer view of the mechanisms behind Arctic amplification.
Abstract
Southern Ocean (SO) surface winds are essential for ventilating the upper ocean by bringing heat and CO2 to the ocean interior. The relationships between mixed layer ventilation, the southern annular mode (SAM), and the storm tracks remain unclear because processes can be governed by short-term wind events as well as long-term means. In this study, observed time-varying 5-day probability density functions (PDFs) of ERA5 surface winds and stresses over the SO are used in a singular value decomposition to derive a linearly independent set of empirical basis functions. The first modes of wind (72% of the total wind variance) and stress (74% of the total stress variance) are highly correlated with a standard SAM index (r = 0.82) and reflect the SAM’s role in driving cyclone intensity and, in turn, extreme westerly winds. The joint PDFs of zonal and meridional wind show that southerly and less westerly winds associated with strong mixed layer ventilation are more frequent during short and distinct negative SAM phases. The probability of these short-term events might be related to midlatitude atmospheric circulation. The second mode describes seasonal changes in the wind variance (16% of the total variance) that are uncorrelated with the first mode. The analysis produces similar results when repeated using 5-day PDFs from a suite of scatterometer products. Differences between wind product PDFs resemble the first mode of the PDFs. Together, these results show a strong correlation between surface stress PDFs and the leading modes of atmospheric variability, suggesting that empirical modes can serve as a novel pathway for understanding differences and variability of surface stress PDFs.
Abstract
Southern Ocean (SO) surface winds are essential for ventilating the upper ocean by bringing heat and CO2 to the ocean interior. The relationships between mixed layer ventilation, the southern annular mode (SAM), and the storm tracks remain unclear because processes can be governed by short-term wind events as well as long-term means. In this study, observed time-varying 5-day probability density functions (PDFs) of ERA5 surface winds and stresses over the SO are used in a singular value decomposition to derive a linearly independent set of empirical basis functions. The first modes of wind (72% of the total wind variance) and stress (74% of the total stress variance) are highly correlated with a standard SAM index (r = 0.82) and reflect the SAM’s role in driving cyclone intensity and, in turn, extreme westerly winds. The joint PDFs of zonal and meridional wind show that southerly and less westerly winds associated with strong mixed layer ventilation are more frequent during short and distinct negative SAM phases. The probability of these short-term events might be related to midlatitude atmospheric circulation. The second mode describes seasonal changes in the wind variance (16% of the total variance) that are uncorrelated with the first mode. The analysis produces similar results when repeated using 5-day PDFs from a suite of scatterometer products. Differences between wind product PDFs resemble the first mode of the PDFs. Together, these results show a strong correlation between surface stress PDFs and the leading modes of atmospheric variability, suggesting that empirical modes can serve as a novel pathway for understanding differences and variability of surface stress PDFs.