Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Nicholas M. Statom x
  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All Modify Search
Luc Lenain, Nicholas M. Statom, and W. Kendall Melville


As reported in 1954, more than a half century ago, C. Cox and W. Munk developed an empirical model of the slope distribution of ocean surface waves that has been widely used ever since to model the optical properties of the sea surface and is of particular importance to the satellite remote sensing community. In that work, the reflectance of sunlight was photographed from a Boeing B-17G bomber and was then analyzed. In this paper, surface slope statistics are investigated from airborne scanning topographic lidar data collected during a series of field experiments off the coast of California and in the Gulf of Mexico, over a broad range of environmental conditions, with wind speeds ranging from approximately 2 to 13 m s−1. Unlike the reflectance-based approach of Cox and Munk, the slope distribution is computed by counting laser glints produced by specular reflections as the lidar is scanned over the surface of the ocean. We find good agreement with their measurements for the mean-square slope and with more recent (2006) results from Bréon and Henriot that were based on satellite remote sensing. Significant discrepancies for the higher-order statistics are found and discussed. We also demonstrate here that airborne scanning lidar technology offers a viable means of remotely estimating surface wind speed and momentum flux.

Open access
Leonel Romero, J. Carter Ohlmann, Enric Pallàs-Sanz, Nicholas M. Statom, Paula Pérez-Brunius, and Stéphane Maritorena


Coincident Lagrangian observations of coastal circulation with surface drifters and dye tracer were collected to better understand small-scale physical processes controlling transport and dispersion over the inner shelf in the Gulf of Mexico. Patches of rhodamine dye and clusters of surface drifters at scales of O(100) m were deployed in a cross-shelf array within 12 km from the coast and tracked for up to 5 h with airborne and in situ observations. The airborne remote sensing system includes a hyperspectral sensor to track the evolution of dye patches and a lidar to measure directional wavenumber spectra of surface waves. Supporting in situ measurements include a CTD with a fluorometer to inform on the stratification and vertical extent of the dye and a real-time towed fluorometer for calibration of the dye concentration from hyperspectral imagery. Experiments were conducted over a wide range of conditions with surface wind speed between 3 and 10 m s−1 and varying sea states. Cross-shelf density gradients due to freshwater runoff resulted in active submesoscale flows. The airborne data allow characterization of the dominant physical processes controlling the dispersion of passive tracers such as freshwater fronts and Langmuir circulation. Langmuir circulation was identified in dye concentration maps on most sampling days except when the near surface stratification was strong. The observed relative dispersion is anisotropic with eddy diffusivities O(1) m2 s−1. Near-surface horizontal dispersion is largest along fronts and in conditions dominated by Langmuir circulation is larger in the crosswind direction. Surface convergence at fronts resulted in strong vertical velocities of up to −66 m day−1.

Full access