Search Results
You are looking at 1 - 1 of 1 items for
- Author or Editor: Nicole M. Stewart x
- Refine by Access: All Content x
Abstract
Historical hydrographic data in the eastern North Atlantic are used to suggest a connection between the northward penetration of Mediterranean Overflow Water (MOW) and the location of the subpolar front, the latter of which is shown to vary with the North Atlantic Oscillation (NAO). During persistent high-NAO periods, when the subpolar front moves eastward, waters in the subpolar gyre essentially block the northward-flowing MOW, preventing its entry into the subpolar gyre. Conversely, during low NAO periods, the subpolar front moves westward, allowing MOW to penetrate past Porcupine Bank into the subpolar gyre. The impacts of an intermittent penetration of MOW into the subpolar gyre, including the possible effect on water mass transformations, remain to be investigated.
Abstract
Historical hydrographic data in the eastern North Atlantic are used to suggest a connection between the northward penetration of Mediterranean Overflow Water (MOW) and the location of the subpolar front, the latter of which is shown to vary with the North Atlantic Oscillation (NAO). During persistent high-NAO periods, when the subpolar front moves eastward, waters in the subpolar gyre essentially block the northward-flowing MOW, preventing its entry into the subpolar gyre. Conversely, during low NAO periods, the subpolar front moves westward, allowing MOW to penetrate past Porcupine Bank into the subpolar gyre. The impacts of an intermittent penetration of MOW into the subpolar gyre, including the possible effect on water mass transformations, remain to be investigated.