Search Results

You are looking at 1 - 10 of 14 items for :

  • Author or Editor: Niklas Schneider x
  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All Modify Search
Niklas Schneider and Peter Müller

Abstract

This study investigates the sensitivity of the dynamics of the surface equatorial ocean to the parameterization of vertical mixing. A new high-resolution, numerical model of a zonally independent equatorial channel helps to explore this question and includes three parameterizations, all of which increase mixing for decreasing Richardson numbers. It compares the smooth increase of eddy coefficients traditionally used in general circulation models, the dramatic increase of the eddy coefficients for small Richardson numbers recently observed in the equatorial Pacific, and the combination of a mixing mechanism based on the diagnostic adjustment of the water column to noncritical Richardson numbers and of a bulk mixed layer model.

The meridional and vertical velocity fields in the surface layer are very sensitive to the strength of mixing implied by the different parameterizations. For the smooth Richardson number dependence of the eddy coefficients, equatorial upwelling due to easterly winds reaches the surface. The dramatically increasing eddy coefficients for small Richardson numbers yield reduced equatorial upwelling rates in the surface layer. The diagnostic adjustment of the Richardson number shows in the surface layer close to the equator reversed meridional shear and downwelling in response to easterly winds!

A simple model for the low-latitude wind current in the presence of horizontal density gradients reproduces this reversal of the meridional and vertical flows. If the equatorial Ekman number is large, there is a latitude range where within the upper layer the vertically averaged flow and density are dominated by rotation, while the vertical shear of horizontal velocities is strongly influenced by vertical friction. In this region vertical shears point downstream of the wind stress and of the pressure forces due to gradients in density. For an easterly wind the pressure gradient forces surface waters toward the equator and can reverse the vertical shear of meridional velocity and the equatorial vertical velocity. The critical value of the vertical eddy coefficient for this reversal to occur is of the order of 5 × 10−3 m2 s−1. This value is of the same order as measured in the surface equatorial Pacific and used in general circulation models. The physics of this reversal are so basic it is likely they are active in the ocean and three-dimensional circulation models.

Full access
Niklas Schneider and Peter Müller

Abstract

We describe the meridional and seasonal structures of daily mean mixed-layer depth and its diurnal amplitude and their relation to atmospheric fluxes by compositing mixed-layer depth estimates derived from density observations. The diurnal mean mixed-layer depth shows a ridge at the equator, troughs, which vary seasonally in intensity, at 10° to 15°N and 5° to 10°S, and a trough appearing just north of the equator in the second half of the year. This is in contrast to the ridge-trough structure of the top of the main thermocline, which reflects the dynamic topography associated with the equatorial current system. The diurnal amplitude is significantly different from zero for most latitudes year-round, indicating that the diurnal cycle of mixed-layer depth is a widespread phenomenon. For sufficiently strong heating, both the mixed-layer depth and its diurnal amplitude are significantly correlated with Monin-Obukhov length scales based on the mean net heat flux, mean wind stress, and mean shortwave radiation. This suggests a possible parameterization of the mixed-layer depth and diurnal amplitude in terms of the mean atmospheric fluxes for meridional scales of a few degrees and seasonal time scales.

Full access
Yoshi N. Sasaki and Niklas Schneider

Abstract

Meridional shifts of the Kuroshio Extension (KE) jet on decadal time scales are examined using a 1960–2004 hindcast simulation of an eddy-resolving ocean general circulation model for the Earth Simulator (OFES). The leading mode of the simulated KE represents the meridional shifts of the jet on decadal time scales with the largest southward shift in the early 1980s associated with the climate regime shift in 1976/77, a result confirmed with subsurface temperature observations. The meridional shifts originate east of the date line and propagate westward along the mean jet axis, a trajectory inconsistent with the traditionally used linear long Rossby waves linearized in Cartesian coordinates, although the phase speed is comparable to that in the traditional framework. The zonal scale of these westward propagation signals is about 4000 km and much larger than their meridional scale. To understand the mechanism for the westward propagation of the KE jet shifts, the authors consider the limit of a thin jet. This dynamic framework describes the temporal evolution of the location of a sharp potential vorticity front under the assumption that variations along the jet are small compared to variations normal to the jet in natural coordinates and is well suited to the strong jet and potential vorticity gradients of the KE. For scaling appropriate to the decadal adjustments in the KE, the thin-jet model successfully reproduces the westward propagations and decadal shifts of the jet latitude simulated in OFES. These results give a physical basis for the prediction of decadal variability in the KE.

Full access
Boyin Huang, Vikram M. Mehta, and Niklas Schneider

Abstract

In the study of decadal variations of the Pacific Ocean circulations and temperature, the role of anomalous net atmospheric freshwater [evaporation minus precipitation minus river runoff (EmP)] has received scant attention even though ocean salinity anomalies are long lived and can be expected to have more variance at low frequencies than at high frequencies. To explore the magnitude of salinity and temperature anomalies and their generation processes, the authors studied the response of the Pacific Ocean to idealized EmP anomalies in the Tropics and subtropics using an ocean general circulation model developed at the Massachusetts Institute of Technology. Simulations showed that salinity anomalies generated by the anomalous EmP were spread throughout the Pacific basin by mean flow advection. This redistribution of salinity anomalies caused adjustments of basin-scale ocean currents, which further resulted in basin-scale temperature anomalies due to changes in heat advection caused by anomalous currents. In this study, the response of the Pacific Ocean to magnitudes and locations of anomalous EmP was linear. When forced with a positive EmP anomaly in the subtropical North (South) Pacific, a cooling occurred in the western North (South) Pacific, which extended to the tropical and South (North) Pacific, and a warming occurred in the eastern North (South) Pacific. When forced with a negative EmP anomaly in the tropical Pacific, a warming occurred in the tropical Pacific and western North and South Pacific and a cooling occurred in the eastern North Pacific near 30°N and the South Pacific near 30°S. The temperature changes (0.2°C) in the tropical Pacific were associated with changes in the South Equatorial Current. The temperature changes (0.8°C) in the subtropical North and South Pacific were associated with changes in the subtropical gyres. The temperature anomalies propagated from the tropical Pacific to the subtropical North and South Pacific via equatorial divergent Ekman flows and poleward western boundary currents, and they propagated from the subtropical North and South Pacific to the western tropical Pacific via equatorward-propagating coastal Kelvin waves and to the eastern tropical Pacific via eastward-propagating equatorial Kelvin waves. The time scale of temperature response was typically much longer than that of salinity response because of slow adjustment times of ocean circulations. These results imply that the slow response of ocean temperature due to anomalous EmP in the Tropics and subtropics may play an important role in the Pacific decadal variability.

Full access
Thomas Kilpatrick, Niklas Schneider, and Emanuele Di Lorenzo

Abstract

The generation of variance by anomalous advection of a passive tracer in the thermocline is investigated using the example of density-compensated temperature and salinity anomalies, or spiciness. A coupled Markov model is developed in which wind stress curl forces the large-scale baroclinic ocean pressure that in turn controls the anomalous geostrophic advection of spiciness. The “double integration” of white noise atmospheric forcing by this Markov model results in a frequency (ω) spectrum of large-scale spiciness proportional to ω −4, so that spiciness variability is concentrated at low frequencies.

An eddy-permitting regional model hindcast of the northeast Pacific (1950–2007) confirms that time series of large-scale spiciness variability are exceptionally smooth, with frequency spectra ∝ ω −4 for frequencies greater than 0.2 cpy. At shorter spatial scales (wavelengths less than ∼500 km), the spiciness frequency spectrum is whitened by mesoscale eddies, but this eddy-forced variability can be filtered out by spatially averaging. Large-scale and long-term measurements are needed to observe the variance of spiciness or any other passive tracer subject to anomalous advection in the thermocline.

Full access
Tangdong Qu, Linlin Zhang, and Niklas Schneider

Abstract

Subtropical underwater (STUW) and its year-to-year variability in annual subduction rate are investigated using recently available Argo data in the North Atlantic. For the period of observation (2002–14), the mean annual subduction rate of the STUW is 7.3 ± 1.2 Sv (1 Sv = 106 m3 s−1) within the density range between 25.0 and 26.0 kg m−3. Once subducted, the STUW spreads in the subtropical gyre as a vertical salinity maximum. In the mean, the spatial changes in temperature and salinity of the STUW tend to compensate each other, and the density of the water mass remains rather stable near 25.5 kg m−3 in the southwestern part of the subtropical gyre. The annual subduction rate of the STUW varies from year to year, and most of this variability is due to lateral induction, which in turn is directly linked to the variability of the winter mixed layer depth. Through modulation of surface buoyancy, wind anomalies associated with the North Atlantic Oscillation are primarily responsible for this variability. Sea surface salinity anomalies in the formation region of the STUW are conveyed into the thermocline, but their westward propagation cannot be detected by the present data.

Full access
Yoshi N. Sasaki, Shoshiro Minobe, and Niklas Schneider

Abstract

This study examines interannual to decadal variability of the Kuroshio Extension (KE) jet using satellite altimeter observations from 1993 to 2010. The leading empirical orthogonal function (EOF) mode of sea level variability in the KE region represents the meridional shift of the KE jet, followed by its strength changes with a few month lag. This shift of the KE jet lags atmospheric fluctuations over the eastern North Pacific by about three years. Broad sea level anomalies (SLAs) emerge in the eastern North Pacific 3–4 years before the upstream KE jet shift, and propagate westward along the KE jet axis. In the course of the propagation, the meridional scale of the SLAs gradually narrows, and their amplitude increases. This westward propagation of SLAs with a speed of about 5 cm s−1 is attributed to the westward propagation of the meridional shift of the jet, consistent with the thin-jet theory, whose importance has been suggested by previous numerical studies. In addition, the westward-propagating signals tend to conserve their quasigeostrophic potential vorticity anomaly, which may explain the characteristic changes of SLAs during the propagation. After the westward-propagating signals of positive (negative) SLAs reach at the east coast of Japan, the upstream KE jet strengthens (weakens) associated with the strength changes of the northern and southern recirculation gyres. Interestingly, this strength change of the KE jet propagates eastward with a speed of about 6 cm s−1, suggesting an importance of advection by the current.

Full access
Shoshiro Minobe, Mio Terada, Bo Qiu, and Niklas Schneider

Abstract

To better understand coastal sea level variability and changes, a theory that predicts sea levels along a curved western boundary using interior ocean sea level information is proposed. The western boundary sea level at a particular latitude is expressed by the sum of contributions from interior sea levels propagating onto the western boundary by long Rossby waves between that latitude and a higher latitude, and from the western boundary sea level at the higher latitude. This theory is examined by using a linear, reduced gravity model. A comparison between the theory and the model shows good agreement. A simple scaling law (or rule of thumb) derived from the theory provides a measure of the higher-latitude sea level and ocean interior sea level contributions. The theory is then tested using data from 34 climate models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) for dynamic sea level changes between the end of the twentieth and twenty-first centuries. The theory captures the nearly uniform sea level rise from the Labrador Sea to New York City (NYC), with a reduction in the increase of sea level farther south toward the equator, qualitatively consistent with the CMIP5 multimodel ensemble, even though the theory underestimates the equatorward reduction rate. Along the South American east coast, the theory successfully reproduced the spatial pattern of the sea level change. The theory suggests a strong link between a sea level rise hot spot along the northeastern coast of North America and the sea level increase in the Labrador Sea, consistent with the result that rates of NYC sea level rise are highly correlated to those in the Labrador Sea in CMIP5 models.

Full access
Shota Katsura, Eitarou Oka, Bo Qiu, and Niklas Schneider

Abstract

Formation and subduction of the North Pacific Tropical Water (NPTW), its interannual variability, and its associated mechanisms were investigated by using gridded Argo-profiling float data and various surface flux data in 2003–11. The NPTW has two formation sites in the center of the North Pacific subtropical gyre, corresponding to two regional sea surface salinity maxima. Mixed layer salinity variations in these two NPTW formation sites were found to be significantly different. While seasonal variation was prominent in the eastern formation site, interannual variation was dominant in the western site. The mixed layer salinity variation in the eastern site was controlled mainly by evaporation, precipitation, and entrainment of fresher water below the mixed layer and was closely related to the seasonal variation of the mixed layer depth. In the western site, the effect of entrainment is small due to a small vertical difference in salinity across the mixed layer base, and excess evaporation over precipitation that tended to be balanced by eddy diffusion, whose strength varied interannually in association with the Pacific decadal oscillation. After subduction, denser NPTW that formed in the eastern site dissipated quickly, while the lighter one that formed in the western site was advected westward as far as the Philippine Sea, transmitting the interannual variation of salinity away from its formation region.

Full access
Niklas Schneider, Emanuele Di Lorenzo, and Pearn P. Niiler

Abstract

Hydrographic observations southwestward of the Southern California Bight in the period 1937–99 show that temperature and salinity variations have very different interannual variability. Temperature varies within and above the thermocline and is correlated with climate indices of El Niño, the Pacific decadal oscillation, and local upwelling. Salinity variability is largest in the surface layers of the offshore salinity minimum and is characterized by decadal-time-scale changes. The salinity anomalies are independent of temperature, of heave of the pycnocline, and of the climate indices. Calculations demonstrate that long-shore anomalous geostrophic advection of the mean salinity gradient accumulates along the mean southward trajectory along the California Current and produces the observed salinity variations. The flow anomalies for this advective process are independent of large-scale climate indices. It is hypothesized that low-frequency variability of the California Current system results from unresolved, small-scale atmospheric forcing or from the ocean mesoscale upstream of the Southern California Bight.

Full access