Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Niklas Schneider x
  • Climate Implications of Frontal Scale Air–Sea Interaction x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Bunmei Taguchi
and
Niklas Schneider

Abstract

Upper ocean heat content (OHC) is at the heart of natural climate variability on interannual-to-decadal time scales, providing climate memory and the source of decadal prediction skill. In the midlatitude North Pacific Ocean, OHC signals are often found to propagate eastward as opposed to the frequently observed westward propagation of sea surface height, another variable that represents the ocean subsurface state. This dichotomy is investigated using a 150-yr coupled GCM integration. Simulated OHC signals are distinguished in terms of two processes that can support eastward propagation: higher baroclinic Rossby wave (RW) modes that are associated with density perturbation, and spiciness anomalies due to density-compensated temperature and salinity anomalies. The analysis herein suggests a unique role of the Kuroshio–Oyashio Extension (KOE) region as an origin of the spiciness and higher mode RW signals. Wind-forced, westward-propagating equivalent barotropic RWs cause meridional shifts of the subarctic front in the KOE region. The associated anomalous circulation crosses mean temperature and salinity gradients and thereby generates spiciness anomalies. These anomalies are advected eastward by the mean currents, while the associated surface temperature anomalies are damped by air–sea heat exchange. The accompanying surface buoyancy flux generates higher baroclinic, eastward-propagating RWs. The results suggest that the large OHC variability in the western boundary currents and their extensions is associated with the spiciness gradients and axial variability of oceanic fronts.

Full access
Thomas Kilpatrick
,
Niklas Schneider
, and
Bo Qiu

Abstract

Recent studies indicate that the influence of midlatitude SST fronts extends through the marine atmospheric boundary layer (MABL) into the free atmosphere, with implications for climate variability. To better understand the mechanisms of this ocean-to-atmosphere influence, SST-induced MABL convergence is explored here with the Weather Research and Forecasting mesoscale model in an idealized, dry, two-dimensional configuration, for winds crossing from cold to warm SST and from warm to cold SST.

For strong cross-front winds, O(10 m s−1), changes in the turbulent mixing and MABL depth across the SST front lead to MABL depth-integrated convergence in the cold-to-warm case and depth-integrated divergence in the warm-to-cold case. The turbulent stress divergence term changes over a shorter length scale than the pressure gradient and Coriolis terms, such that the MABL response directly above the SST front is governed by nonrotating, internal boundary layer–like physics, which are consistent with the vertical mixing mechanism. An important consequence is that the increment in the cross-front surface stress diagnoses the vertical motion at the top of the MABL. These physics are at variance with some previously proposed SST frontal MABL models in which pressure adjustments determine the MABL convergence.

The SST-induced MABL convergence results in vertical motion that excites a stationary internal gravity wave in the free atmosphere, analogous to a mountain wave. For a 15 m s−1 cross-front wind, the gravity wave forced by an SST increase of 3°C over 200 km is comparable to that forced by an 80-m change in topography.

Full access
Bunmei Taguchi
,
Niklas Schneider
,
Masami Nonaka
, and
Hideharu Sasaki

Abstract

Generation and propagation processes of upper-ocean heat content (OHC) in the North Pacific are investigated using oceanic subsurface observations and an eddy-resolving ocean general circulation model hindcast simulation. OHC anomalies are decomposed into physically distinct dynamical components (OHC ρ ) due to temperature anomalies that are associated with density anomalies and spiciness components (OHC χ ) due to temperature anomalies that are density compensating with salinity. Analysis of the observational and model data consistently shows that both dynamical and spiciness components contribute to interannual–decadal OHC variability, with the former (latter) component dominating in the subtropical (subpolar) North Pacific. OHC ρ variability represents heaving of thermocline, propagates westward, and intensifies along the Kuroshio Extension, consistent with jet-trapped Rossby waves, while OHC χ variability propagates eastward along the subarctic frontal zone, suggesting advection by mean eastward currents. OHC χ variability tightly corresponds in space to horizontal mean spiciness gradients. Meanwhile, area-averaged OHC χ anomalies in the western subarctic frontal zone closely correspond in time to meridional shifts of the subarctic frontal zone. Regression coefficient of the OHC χ time series on the frontal displacement anomalies quantitatively agree with the area-averaged mean spiciness gradient in the region, and suggest that OHC χ is generated via frontal variability in the subarctic frontal zone.

Full access