Search Results

You are looking at 1 - 10 of 13 items for :

  • Author or Editor: Noel Keenlyside x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Noel S. Keenlyside and Mojib Latif

Abstract

An observational-based analysis of coupled variability in the equatorial Atlantic and its seasonality is presented. Regression analysis shows that the three elements of the Bjerknes positive feedback exist in the Atlantic and are spatially similar to those of the Pacific. The cross-correlation functions of the elements of the Bjerknes feedback are also similar and consistent with an ocean–atmosphere coupled mode. However, the growth rate in the Atlantic is up to 50% weaker, and explained variance is significantly lower. The Bjerknes feedback in the Atlantic is strong in boreal spring and summer, and weak in other seasons, which explains why the largest sea surface temperature anomalies (SSTAs) occur in boreal summer. Its seasonality is determined by seasonal variations in both atmospheric sensitivity to SSTA and SSTA sensitivity to subsurface temperature anomalies.

Full access
Malte F. Jansen, Dietmar Dommenget, and Noel Keenlyside

Abstract

Statistical analysis of observations (including atmospheric reanalysis and forced ocean model simulations) is used to address two questions: First, does an analogous mechanism to that of El Niño–Southern Oscillation (ENSO) exist in the equatorial Atlantic or Indian Ocean? Second, does the intrinsic variability in these basins matter for ENSO predictability? These questions are addressed by assessing the existence and strength of the Bjerknes and delayed negative feedbacks in each tropical basin, and by fitting conceptual recharge oscillator models, both with and without interactions among the basins.

In the equatorial Atlantic the Bjerknes and delayed negative feedbacks exist, although weaker than in the Pacific. Equatorial Atlantic variability is well described by the recharge oscillator model, with an oscillatory mixed ocean dynamics–sea surface temperature (SST) mode present in boreal spring and summer. The dynamics of the tropical Indian Ocean, however, appear to be quite different: no recharge–discharge mechanism is found. Although a positive Bjerknes-like feedback from July to September is found, the role of heat content seems secondary.

Results also show that Indian Ocean interaction with ENSO tends to damp the ENSO oscillation and is responsible for a frequency shift to shorter periods. However, the retrospective forecast skill of the conceptual model is hardly improved by explicitly including Indian Ocean SST. The interaction between ENSO and the equatorial Atlantic variability is weaker. However, a feedback from the Atlantic on ENSO appears to exist, which slightly improves the retrospective forecast skill of the conceptual model.

Full access
Lennart Bengtsson, Kevin I. Hodges, and Noel Keenlyside

Abstract

Extratropical cyclones and how they may change in a warmer climate have been investigated in detail with a high-resolution version of the ECHAM5 global climate model. A spectral resolution of T213 (63 km) is used for two 32-yr periods at the end of the twentieth and twenty-first centuries and integrated for the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. Extremes of pressure, vorticity, wind, and precipitation associated with the cyclones are investigated and compared with a lower-resolution simulation. Comparison with observations of extreme wind speeds indicates that the model reproduces realistic values.

This study also investigates the ability of the model to simulate extratropical cyclones by computing composites of intense storms and contrasting them with the same composites from the 40-yr ECMWF Re-Analysis (ERA-40). Composites of the time evolution of intense cyclones are reproduced with great fidelity; in particular the evolution of central surface pressure is almost exactly replicated, but vorticity, maximum wind speed, and precipitation are higher in the model. Spatial composites also show that the distributions of pressure, winds, and precipitation at different stages of the cyclone life cycle compare well with those from ERA-40, as does the vertical structure.

For the twenty-first century, changes in the distribution of storms are very similar to those of previous study. There is a small reduction in the number of cyclones but no significant changes in the extremes of wind and vorticity in both hemispheres. There are larger regional changes in agreement with previous studies.

The largest changes are in the total precipitation, where a significant increase is seen. Cumulative precipitation along the tracks of the cyclones increases by some 11% per track, or about twice the increase in global precipitation, while the extreme precipitation is close to the globally averaged increase in column water vapor (some 27%). Regionally, changes in extreme precipitation are even higher because of changes in the storm tracks.

Full access
Noel S. Keenlyside, Mojib Latif, and Anke Dürkop

Abstract

Multichannel singular spectrum analysis (MSSA) of surface zonal wind, sea surface temperature (SST), 20° isotherm depth, and surface zonal current observations (between 1990 and 2004) identifies three coupled ocean–atmosphere modes of variability in the tropical Pacific: the El Niño–Southern Oscillation (ENSO), the annual cycle, and a mode with a 14–18-month period, which is referred to as sub-ENSO in this study. The sub-ENSO mode accounts for the near 18-month (near annual) variability prior to (following) the 1997/98 El Niño event. It was strongest during this El Niño event, with SST anomalies exceeding 1°C. Sub-ENSO peak SST anomalies are ENSO-like in structure and are associated with eastward propagating heat content variations. However, the SST anomalies are preceded by and in near quadrature with relatively strong remotely forced westward propagating zonal current variations, suggesting the sub-ENSO mode arises from the zonal-advective feedback.

The sub-ENSO mode is found to exist also in an intermediate complexity model (ICM) of the tropical Pacific. A heat budget analysis of the model’s sub-ENSO mode shows it indeed arises from the zonal-advective feedback. In the model, both ENSO and sub-ENSO modes coexist, but there is a weak nonlinear interaction between them. Experiments also show that the observed changes in sub-ENSO’s characteristics may be explained by changes in the relative importance of zonal and vertical advection SST tendencies.

Full access
Daniela Matei, Noel Keenlyside, Mojib Latif, and Johann Jungclaus

Abstract

The relative impact of the subtropical North and South Pacific Oceans on the tropical Pacific climate mean state and variability is estimated using an ocean–atmosphere–sea ice coupled general circulation model. Tailored experiments are performed in which the model is forced by idealized sea surface temperature anomalies (SSTAs) in the subtropics of both hemispheres. The main results of this study suggest that subtropical South Pacific climate variations play a dominant role in tropical Pacific decadal variability and in the decadal modulation of El Niño–Southern Oscillation (ENSO).

In response to a 2°C warming in the subtropical South Pacific, the equatorial Pacific SST increases by about 0.6°C, approximately 65% larger than the change in the North Pacific experiment. The subtropics affect equatorial SST mainly through atmosphere–mixed layer interactions in the South Pacific experiments; the response is mostly accomplished within a decade. The “oceanic tunnel” dominates in the North Pacific experiments; the response takes at least 100 yr to be accomplished. Similar sensitivity experiments conducted with the stand-alone atmosphere model showed that both air–sea interactions and ocean dynamics are crucial in shaping the tropical climate response.

The statistics of ENSO exhibit significant changes in amplitude and frequency in response to a warming/cooling of the subtropical South Pacific: a 2°C warming (cooling) of subtropical South Pacific SST reduces (increases) the interannual standard deviation by about 30% (20%) and shortens (lengthens) the ENSO period. The simulated changes in the equatorial zonal SST gradient are the main contributor to the modulation of ENSO variability. The simulated intensification (weakening) of the annual cycle in response to an enhanced warming (cooling) in subtropical South Pacific partly explains the shifts in frequency, but may also lead to a weaker (stronger) ENSO. The subtropical North Pacific thermal forcing did not change the statistical properties of ENSO as strongly.

Full access
Patrick Wetzel, Ernst Maier-Reimer, Michael Botzet, Johann Jungclaus, Noel Keenlyside, and Mojib Latif

Abstract

The influence of phytoplankton on the seasonal cycle and the mean global climate is investigated in a fully coupled climate model. The control experiment uses a fixed attenuation depth for shortwave radiation, while the attenuation depth in the experiment with biology is derived from phytoplankton concentrations simulated with a marine biogeochemical model coupled online to the ocean model. Some of the changes in the upper ocean are similar to the results from previous studies that did not use interactive atmospheres, for example, amplification of the seasonal cycle; warming in upwelling regions, such as the equatorial Pacific and the Arabian Sea; and reduction in sea ice cover in the high latitudes. In addition, positive feedbacks within the climate system cause a global shift of the seasonal cycle. The onset of spring is about 2 weeks earlier, which results in a more realistic representation of the seasons. Feedback mechanisms, such as increased wind stress and changes in the shortwave radiation, lead to significant warming in the midlatitudes in summer and to seasonal modifications of the overall warming in the equatorial Pacific. Temperature changes also occur over land where they are sometimes even larger than over the ocean. In the equatorial Pacific, the strength of interannual SST variability is reduced by about 10%–15% and phase locking to the annual cycle is improved. The ENSO spectral peak is broader than in the experiment without biology and the dominant ENSO period is increased to around 5 yr. Also the skewness of ENSO variability is slightly improved. All of these changes lead to the conclusion that the influence of marine biology on the radiative budget of the upper ocean should be considered in detailed simulations of the earth’s climate.

Full access
Rong-Hua Zhang, Richard Kleeman, Stephen E. Zebiak, Noel Keenlyside, and Stephane Raynaud

Abstract

An empirical model for the temperature of subsurface water entrained into the ocean mixed layer (Te) is presented and evaluated to improve sea surface temperature anomaly (SSTA) simulations in an intermediate ocean model (IOM) of the tropical Pacific. An inverse modeling approach is adopted to estimate Te from an SSTA equation using observed SST and simulated upper-ocean currents. A relationship between Te and sea surface height (SSH) anomalies is then obtained by utilizing a singular value decomposition (SVD) of their covariance. This empirical scheme is able to better parameterize Te anomalies than other local schemes and quite realistically depicts interannual variability of Te, including a nonlocal phase lag relation of Te variations relative to SSH anomalies over the central equatorial Pacific. An improved Te parameterization naturally leads to better depiction of the subsurface effect on SST variability by the mean upwelling of subsurface temperature anomalies. As a result, SSTA simulations are significantly improved in the equatorial Pacific; a comparison with other schemes indicates that systematic errors of the simulated SSTAs are significantly small—apparently due to the optimized empirical Teparameterization. Cross validation and comparisons with other model simulations are made to illustrate the robustness and effectiveness of the scheme. In particular it is demonstrated that the empirical Te model constructed from one historical period can be successfully used to improve SSTA simulations in another.

Full access
Vladimir A. Semenov, Mojib Latif, Dietmar Dommenget, Noel S. Keenlyside, Alexander Strehz, Thomas Martin, and Wonsun Park

Abstract

The twentieth-century Northern Hemisphere surface climate exhibits a long-term warming trend largely caused by anthropogenic forcing, with natural decadal climate variability superimposed on it. This study addresses the possible origin and strength of internal decadal climate variability in the Northern Hemisphere during the recent decades. The authors present results from a set of climate model simulations that suggest natural internal multidecadal climate variability in the North Atlantic–Arctic sector could have considerably contributed to the Northern Hemisphere surface warming since 1980. Although covering only a few percent of the earth’s surface, the Arctic may have provided the largest share in this. It is hypothesized that a stronger meridional overturning circulation in the Atlantic and the associated increase in northward heat transport enhanced the heat loss from the ocean to the atmosphere in the North Atlantic region and especially in the North Atlantic portion of the Arctic because of anomalously strong sea ice melt. The model results stress the potential importance of natural internal multidecadal variability originating in the North Atlantic–Arctic sector in generating interdecadal climate changes, not only on a regional scale, but also possibly on a hemispheric and even a global scale.

Full access
Arielle Stela N. Imbol Nkwinkwa, Mathieu Rouault, Noel Keenlyside, and Shunya Koseki

Abstract

The Agulhas Current (AC) creates a sharp temperature gradient with the surrounding ocean, leading to a large turbulent flux of moisture from ocean to atmosphere. We use two simulations of the Weather Research and Forecasting (WRF) Model to show the seasonal impact of the warm core of the AC on southern Africa precipitation. In one simulation the sea surface temperature (SST) of the AC is similar to satellite observations, while the second uses satellite SST observations spatially smoothed to reduce the temperature of the core of the AC by ~1.5°C. We show that decreasing the SST of the AC reduces the precipitation of the wettest seasons (austral summer and autumn) inland. Over the ocean, reducing the SST reduces precipitation, low-level wind convergence, SST, and SLP Laplacians above the AC in all seasons, consistent with the pressure adjustment mechanism. Moreover, winter precipitation above the AC may also be related to increased latent flux. In summer and autumn, the AC SST reduction is also associated with decreased precipitation farther inland (more than 1.5 mm day−1), caused by an atmospheric circulation that decreases the horizontal moisture flux from the AC to South Africa. The reduction is also associated with higher geopotential height extending from the surface east and over the AC to the midtroposphere over southeastern Africa. The westward tilted geopotential height is consistent with the linear response to shallow diabatic heating in midlatitudes. An identical mechanism occurs in spring but is weaker. Winter rainfall response is confined above the AC.

Restricted access
Hyacinth C. Nnamchi, Jianping Li, Fred Kucharski, In-Sik Kang, Noel S. Keenlyside, Ping Chang, and Riccardo Farneti

Abstract

Equatorial Atlantic variability is dominated by the Atlantic Niño peaking during the boreal summer. Studies have shown robust links of the Atlantic Niño to fluctuations of the St. Helena subtropical anticyclone and Benguela Niño events. Furthermore, the occurrence of opposite sea surface temperature (SST) anomalies in the eastern equatorial and southwestern extratropical South Atlantic Ocean (SAO), also peaking in boreal summer, has recently been identified and termed the SAO dipole (SAOD). However, the extent to which and how the Atlantic Niño and SAOD are related remain unclear. Here, an analysis of historical observations reveals the Atlantic Niño as a possible intrinsic equatorial arm of the SAOD. Specifically, the observed sporadic equatorial warming characteristic of the Atlantic Niño (~0.4 K) is consistently linked to southwestern cooling (~−0.4 K) of the Atlantic Ocean during the boreal summer. Heat budget calculations show that the SAOD is largely driven by the surface net heat flux anomalies while ocean dynamics may be of secondary importance. Perturbations of the St. Helena anticyclone appear to be the dominant mechanism triggering the surface heat flux anomalies. A weakening of the anticyclone will tend to weaken the prevailing northeasterlies and enhance evaporative cooling over the southwestern Atlantic Ocean. In the equatorial region, the southeast trade winds weaken, thereby suppressing evaporation and leading to net surface warming. Thus, it is hypothesized that the wind–evaporation–SST feedback may be responsible for the growth of the SAOD events linking southern extratropics and equatorial Atlantic variability via surface net heat flux anomalies.

Full access