Search Results

You are looking at 1 - 9 of 9 items for :

  • Author or Editor: Norman B. Wood x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Andrew J. Heymsfield
,
Sergey Y. Matrosov
, and
Norman B. Wood

Abstract

Microphysical data and radar reflectivities (Z e , −15 < Z e < 10 dB) measured from flights during the NASA Tropical Clouds, Convection, Chemistry and Climate field program are used to relate Z e at X and W band to measured ice water content (IWC). Because nearly collocated Z e and IWC were each directly measured, Z e IWC relationships could be developed directly. Using the particle size distributions and ice particle masses evaluated based on the direct IWC measurements, reflectivity–snowfall rate (Z e S) relationships were also derived. For −15 < Z e < 10 dB, the relationships herein yield larger IWC and S than given by the retrievals and earlier relationships. The sensitivity of radar reflectivity to particle size distribution and size-dependent mass, shape, and orientation introduces significant uncertainties in retrieved quantities since these factors vary substantially globally. To partially circumvent these uncertainties, a W-band Z e S relationship is developed by relating four years of global CloudSat reflectivity observations measured immediately above the melting layer to retrieved rain rates at the base of the melting layer. The supporting assumptions are that the water mass flux is constant through the melting layer, that the air temperature is nearly 0°C, and that the retrieved rain rates are well constrained. Where Z e > 10 dB, this Z e S relationship conforms well to earlier relationships, but for Z e < 10 dB it yields higher IWC and S. Because not all retrieval algorithms estimate either or both IWC and S, the authors use a large aircraft-derived dataset to relate IWC and S. The IWC can then be estimated from S and vice versa.

Full access
Norman B. Wood
,
Tristan S. L’Ecuyer
,
Andrew J. Heymsfield
, and
Graeme L. Stephens

Abstract

A Bayesian optimal estimation retrieval is used to determine probability density functions of snow microphysical parameters from ground-based observations taken during four snowfall events in southern Ontario, Canada. The retrieved variables include the parameters of power laws describing particle mass and horizontally projected area. The results reveal nontrivial correlations between mass and area parameters that were not apparent in prior studies. The observations provide information mainly about the mass coefficient , somewhat less information about the mass exponent and the projected area coefficient , and minimal information about the projected area exponent . The expected values for retrieved mass power-law parameters = 0.003 28 and = 2.25 are consistent with those from several prior studies that looked at the mass of aggregate-like particles and precipitating ice aloft as functions of maximum particle dimension. Differences from other studies appear related to differences in the dimensions used to define particle size. The retrieval allows the analysis of relatively large volumes of continuous observations, greatly enhancing sampling relative to single-particle analyses. The retrieved properties are used to constrain 94-GHz (W band) radar scattering properties for a variety of snow particle shapes. Synthetic reflectivities calculated using these scattering properties and observed particle size distributions show that a branched, spatial aggregate-like particle produces good agreement with coincident observed W-band reflectivities. Uncertainties in the synthetic reflectivities, estimated by applying a simple error-propagation model, are substantial and are dominated by the uncertainties in and .

Full access
Andrew Heymsfield
,
Martina Krämer
,
Norman B. Wood
,
Andrew Gettelman
,
Paul R. Field
, and
Guosheng Liu

Abstract

Cloud ice microphysical properties measured or estimated from in situ aircraft observations are compared with global climate models and satellite active remote sensor retrievals. Two large datasets, with direct measurements of the ice water content (IWC) and encompassing data from polar to tropical regions, are combined to yield a large database of in situ measurements. The intention of this study is to identify strengths and weaknesses of the various methods used to derive ice cloud microphysical properties. The in situ data are measured with total water hygrometers, condensed water probes, and particle spectrometers. Data from polar, midlatitude, and tropical locations are included. The satellite data are retrieved from CloudSat/CALIPSO [the CloudSat Ice Cloud Property Product (2C-ICE) and 2C-SNOW-PROFILE] and Global Precipitation Measurement (GPM) Level2A. Although the 2C-ICE retrieval is for IWC, a method to use the IWC to get snowfall rates S is developed. The GPM retrievals are for snowfall rate only. Model results are derived using the Community Atmosphere Model (CAM5) and the Met Office Unified Model [Global Atmosphere 7 (GA7)]. The retrievals and model results are related to the in situ observations using temperature and are partitioned by geographical region. Specific variables compared between the in situ observations, models, and retrievals are the IWC and S. Satellite-retrieved IWCs are reasonably close in value to the in situ observations, whereas the models’ values are relatively low by comparison. Differences between the in situ IWCs and those from the other methods are compounded when S is considered, leading to model snowfall rates that are considerably lower than those derived from the in situ data. Anomalous trends with temperature are noted in some instances.

Full access
Gail Skofronick-Jackson
,
Mark Kulie
,
Lisa Milani
,
Stephen J. Munchak
,
Norman B. Wood
, and
Vincenzo Levizzani

Abstract

Retrievals of falling snow from space-based observations represent key inputs for understanding and linking Earth’s atmospheric, hydrological, and energy cycles. This work quantifies and investigates causes of differences among the first stable falling snow retrieval products from the Global Precipitation Measurement (GPM) Core Observatory satellite and CloudSat’s Cloud Profiling Radar (CPR) falling snow product. An important part of this analysis details the challenges associated with comparing the various GPM and CloudSat snow estimates arising from different snow–rain classification methods, orbits, resolutions, sampling, instrument specifications, and algorithm assumptions. After equalizing snow–rain classification methodologies and limiting latitudinal extent, CPR observes nearly 10 (3) times the occurrence (accumulation) of falling snow as GPM’s Dual-Frequency Precipitation Radar (DPR). The occurrence disparity is substantially reduced if CloudSat pixels are averaged to simulate DPR radar pixels and CPR observations are truncated below the 8-dBZ reflectivity threshold. However, even though the truncated CPR- and DPR-based data have similar falling snow occurrences, average snowfall rate from the truncated CPR record remains significantly higher (43%) than the DPR, indicating that retrieval assumptions (microphysics and snow scattering properties) are quite different. Diagnostic reflectivity (Z)–snow rate (S) relationships were therefore developed at Ku and W band using the same snow scattering properties and particle size distributions in a final effort to minimize algorithm differences. CPR–DPR snowfall amount differences were reduced to ~16% after adopting this diagnostic Z–S approach.

Full access
Randy J. Chase
,
Stephen W. Nesbitt
,
Greg M. McFarquhar
,
Norman B. Wood
, and
Gerald M. Heymsfield

Abstract

Two spaceborne radars currently in orbit enable the sampling of snowfall near the surface and throughout the atmospheric column, namely, CloudSat’s Cloud Profiling Radar (CPR) and the Global Precipitation Measurement mission’s Dual-Frequency Precipitation Radar (GPM-DPR). In this paper, a direct comparison of the CPR’s 2C-SNOW-PROFILE (2CSP), the operational GPM-DPR algorithm (2ADPR) and a neural network (NN) retrieval applied to the GPM-DPR data is performed using coincident observations between both radars. Examination of over 3500 profiles within moderate to strong precipitation (Ka band ≥ 18 dBZ) show that the NN retrieval provides the closest retrieval of liquid equivalent precipitation rate R immediately above the melting level to the R retrieved just below the melting layer, agreeing within 5%. Meanwhile, 2CSP retrieves a maximum value of R at −15°C, decreases by 35% just above the melting layer, and is about 50% smaller than the GPM-DPR retrieved R below the melting layer. CPR-measured reflectivity shows median reduction of 2–3 dB from −15° to −2.5°C, likely the reason for the 2CSP retrieval reduction of R. Two case studies from NASA field campaigns [i.e., Olympic Mountains Experiment (OLYMPEX) and Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS)] provide analogs to the type of precipitating systems found in the comparison between retrieval products. For the snowfall events that GPM-DPR can observe, this work suggests that the 2CSP retrieval is likely underestimating the unattenuated reflectivity, resulting in a potential negative, or low, bias in R. Future work should investigate how frequently the underestimated reflectivity profiles occur within the CPR record and quantify its potential effects on global snowfall accumulation estimation.

Free access
Claire Pettersen
,
Mark S. Kulie
,
Larry F. Bliven
,
Aronne J. Merrelli
,
Walter A. Petersen
,
Timothy J. Wagner
,
David B. Wolff
, and
Norman B. Wood

Abstract

Presented are four winter seasons of data from an enhanced precipitation instrument suite based at the National Weather Service (NWS) Office in Marquette (MQT), Michigan (250–500 cm of annual snow accumulation). In 2014 the site was augmented with a Micro Rain Radar (MRR) and a Precipitation Imaging Package (PIP). MRR observations are utilized to partition large-scale synoptically driven (deep) and surface-forced (shallow) snow events. Coincident PIP and NWS MQT meteorological surface observations illustrate different characteristics with respect to snow event category. Shallow snow events are often extremely shallow, with MRR-indicated precipitation heights of less than 1500 m above ground level. Large vertical reflectivity gradients indicate efficient particle growth, and increased boundary layer turbulence inferred from observations of spectral width implies increased aggregation in shallow snow events. Shallow snow events occur 2 times as often as deep events; however, both categories contribute approximately equally to estimated annual accumulation. PIP measurements reveal distinct regime-dependent snow microphysical differences, with shallow snow events having broader particle size distributions and comparatively fewer small particles and deep snow events having narrower particle size distributions and comparatively more small particles. In addition, coincident surface meteorological measurements indicate that most shallow snow events are associated with surface winds originating from the northwest (over Lake Superior), cold temperatures, and relatively high surface pressures, which are characteristics that are consistent with cold-air outbreaks. Deep snow events have meteorologically distinct conditions that are accordant with midlatitude cyclones and frontal structures, with mostly southwest surface winds, warmer temperatures approaching freezing, and lower surface pressures.

Open access
Julia A. Shates
,
Claire Pettersen
,
Tristan S. L’Ecuyer
,
Steven J. Cooper
,
Mark S. Kulie
, and
Norman B. Wood

Abstract

The prevailing snowfall regimes at two Scandinavian sites, Haukeliseter, Norway, and Kiruna, Sweden, are documented using ground-based in situ and remote sensing methods. Micro Rain Radar (MRR) profiles indicate three distinct snowfall regimes occur at both sites: shallow, deep, and intermittent snowfall. The shallow snowfall regime produces the lowest mean snowfall rates and radar echo tops are confined below 1.5 km above ground level (AGL). Shallow snowfall occurs under areas of large-scale subsidence with a moist boundary layer and dry air aloft. The atmospheric ridge coinciding with shallow snowfall is highly anomalous over Haukeliseter but is more common in Kiruna where shallow snowfall was frequently observed. The shallow snowfall particle size distributions (PSDs) are broad with lower particle concentrations than other regimes, especially small particles. Deep snowfall events exhibit MRR profiles that extend above 2 km AGL and tend to be associated with weak low pressure and high relative humidity throughout the troposphere. The PSDs in deep events are narrower with high concentrations of small particles. Increasing MRR reflectivity toward the surface suggests aggregation as a possible growth process during deep snowfall events. The heaviest mean snowfall rates are associated with intermittent events that are characterized by deep MRR profiles but have variations in intensity and height. The intermittent regime is associated with anomalous, deep low pressure along the coast of Norway and enhanced relative humidity at lower levels. The PSDs reveal high concentrations of small and large particles. The analysis reveals that there are unique characteristics of shallow, deep, and intermittent snowfall regimes that are common between the sites.

Full access
Claire E. Schirle
,
Steven J. Cooper
,
Mareile Astrid Wolff
,
Claire Pettersen
,
Norman B. Wood
,
Tristan S. L’Ecuyer
,
Trond Ilmo
, and
Knut Nygård

Abstract

The ability of in situ snowflake microphysical observations to constrain estimates of surface snowfall accumulations derived from coincident, ground-based radar observations is explored. As part of the High-Latitude Measurement of Snowfall (HiLaMS) field campaign, a Micro Rain Radar (MRR), Precipitation Imaging Package (PIP), and Multi-Angle Snow Camera (MASC) were deployed to the Haukeliseter Test Site run by the Norwegian Meteorological Institute during winter 2016/17. This measurement site lies near an elevation of 1000 m in the mountains of southern Norway and houses a double-fence automated reference (DFAR) snow gauge and a comprehensive set of meteorological observations. MASC and PIP observations provided estimates of particle size distribution (PSD), fall speed, and habit. These properties were used as input for a snowfall retrieval algorithm using coincident MRR reflectivity measurements. Retrieved surface snowfall accumulations were evaluated against DFAR observations to quantify retrieval performance as a function of meteorological conditions for the Haukeliseter site. These analyses found differences of less than 10% between DFAR- and MRR-retrieved estimates over the field season when using either PIP or MASC observations for low wind “upslope” events. Larger biases of at least 50% were found for high wind “pulsed” events likely because of sampling limitations in the in situ observations used to constrain the retrieval. However, assumptions of MRR Doppler velocity for mean particle fall speed and a temperature-based PSD parameterization reduced this difference to +16% for the pulsed events. Although promising, these results ultimately depend upon selection of a snowflake particle model that is well matched to scene environmental conditions.

Full access
Andrew Heymsfield
,
Aaron Bansemer
,
Norman B. Wood
,
Guosheng Liu
,
Simone Tanelli
,
Ousmane O. Sy
,
Michael Poellot
, and
Chuntao Liu

Abstract

Two methods for deriving relationships between the equivalent radar reflectivity factor Ze and the snowfall rate S at three radar wavelengths are described. The first method uses collocations of in situ aircraft (microphysical observations) and overflying aircraft (radar observations) from two field programs to develop ZeS relationships. In the second method, measurements of Ze at the top of the melting layer (ML), from radars on the Tropical Rainfall Measuring Mission (TRMM), Global Precipitation Measurement (GPM), and CloudSat satellites, are related to the retrieved rainfall rate R at the base of the ML, assuming that the mass flux through the ML is constant. Retrievals of R are likely to be more reliable than S because far fewer assumptions are involved in the retrieval and because supporting ground-based validation data are available. The ZeS relationships developed here for the collocations and the mass-flux technique are compared with those derived from level 2 retrievals from the standard satellite products and with a number of relationships developed and reported by others. It is shown that there are substantial differences among them. The relationships developed here promise improvements in snowfall-rate retrievals from satellite-based radar measurements.

Full access