Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Norman G. Loeb x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Norman G. Loeb
,
Konstantin Loukachine
,
Natividad Manalo-Smith
,
Bruce A. Wielicki
, and
David F. Young

Abstract

Top-of-atmosphere (TOA) radiative fluxes from the Clouds and the Earth's Radiant Energy System (CERES) are estimated from empirical angular distribution models (ADMs) that convert instantaneous radiance measurements to TOA fluxes. This paper evaluates the accuracy of CERES TOA fluxes obtained from a new set of ADMs developed for the CERES instrument onboard the Tropical Rainfall Measuring Mission (TRMM). The uncertainty in regional monthly mean reflected shortwave (SW) and emitted longwave (LW) TOA fluxes is less than 0.5 W m−2, based on comparisons with TOA fluxes evaluated by direct integration of the measured radiances. When stratified by viewing geometry, TOA fluxes from different angles are consistent to within 2% in the SW and 0.7% (or 2 W m−2) in the LW. In contrast, TOA fluxes based on ADMs from the Earth Radiation Budget Experiment (ERBE) applied to the same CERES radiance measurements show a 10% relative increase with viewing zenith angle in the SW and a 3.5% (9 W m−2) decrease with viewing zenith angle in the LW. Based on multiangle CERES radiance measurements, 1° regional instantaneous TOA flux errors from the new CERES ADMs are estimated to be <10 W m−2 in the SW and <3.5 W m−2 in the LW. The errors show little or no dependence on cloud phase, cloud optical depth, and cloud infrared emissivity. An analysis of cloud radiative forcing (CRF) sensitivity to differences between ERBE and CERES TRMM ADMs, scene identification, and directional models of albedo as a function of solar zenith angle shows that ADM and clear-sky scene identification differences can lead to an 8 W m−2 root-mean-square (rms) difference in 1° daily mean SW CRF and a 4 W m−2 rms difference in LW CRF. In contrast, monthly mean SW and LW CRF differences reach 3 W m−2. CRF is found to be relatively insensitive to differences between the ERBE and CERES TRMM directional models.

Full access
Seung-Hee Ham
,
Seiji Kato
,
Fred G. Rose
,
Norman G. Loeb
,
Kuan-Man Xu
,
Tyler Thorsen
,
Michael G. Bosilovich
,
Sunny Sun-Mack
,
Yan Chen
, and
Walter F. Miller

Abstract

Cloud macrophysical changes over the Pacific Ocean from 2007 to 2017 are examined by combining CALIPSO and CloudSat (CALCS) active-sensor measurements, and these are compared with MODIS passive-sensor observations. Both CALCS and MODIS capture well-known features of cloud changes over the Pacific associated with meteorological conditions during El Niño–Southern Oscillation (ENSO) events. For example, midcloud (cloud tops at 3–10 km) and high cloud (cloud tops at 10–18 km) amounts increase with relative humidity (RH) anomalies. However, a better correlation is obtained between CALCS cloud volume and RH anomalies, confirming more accurate CALCS cloud boundaries than MODIS. Both CALCS and MODIS show that low cloud (cloud tops at 0–3 km) amounts increase with EIS and decrease with SST over the eastern Pacific, consistent with earlier studies. It is also further shown that the low cloud amounts do not increase with positive EIS anomalies if SST anomalies are positive. While similar features are found between CALCS and MODIS low cloud anomalies, differences also exist. First, relative to CALCS, MODIS shows stronger anticorrelation between low and mid/high cloud anomalies over the central and western Pacific, which is largely due to the limitation in detecting overlapping clouds from passive MODIS measurements. Second, relative to CALCS, MODIS shows smaller impacts of mid- and high clouds on the low troposphere (<3 km). The differences are due to the underestimation of MODIS cloud layer thicknesses of mid- and high clouds.

Full access
Norman G. Loeb
,
Natividad Manalo-Smith
,
Seiji Kato
,
Walter F. Miller
,
Shashi K. Gupta
,
Patrick Minnis
, and
Bruce A. Wielicki

Abstract

Clouds and the Earth's Radiant Energy System (CERES) investigates the critical role that clouds and aerosols play in modulating the radiative energy flow within the Earth–atmosphere system. CERES builds upon the foundation laid by previous missions, such as the Earth Radiation Budget Experiment, to provide highly accurate top-of-atmosphere (TOA) radiative fluxes together with coincident cloud and aerosol properties inferred from high-resolution imager measurements. This paper describes the method used to construct empirical angular distribution models (ADMs) for estimating shortwave, longwave, and window TOA radiative fluxes from CERES radiance measurements on board the Tropical Rainfall Measuring Mission satellite. To construct the ADMs, multiangle CERES measurements are combined with coincident high-resolution Visible Infrared Scanner measurements and meteorological parameters from the European Centre for Medium-Range Weather Forecasts data assimilation product. The ADMs are stratified by scene types defined by parameters that have a strong influence on the angular dependence of Earth's radiation field at the TOA. Examples of how the new CERES ADMs depend upon the imager-based parameters are provided together with comparisons with existing models.

Full access
Norman G. Loeb
,
Kory J. Priestley
,
David P. Kratz
,
Erika B. Geier
,
Richard N. Green
,
Bruce A. Wielicki
,
Patricia O’Rawe Hinton
, and
Sandra K. Nolan

Abstract

A new method for determining unfiltered shortwave (SW), longwave (LW), and window radiances from filtered radiances measured by the Clouds and the Earth’s Radiant Energy System (CERES) satellite instrument is presented. The method uses theoretically derived regression coefficients between filtered and unfiltered radiances that are a function of viewing geometry, geotype, and whether cloud is present. Relative errors in instantaneous unfiltered radiances from this method are generally well below 1% for SW radiances (std dev ≈0.4% or ≈1 W m−2 equivalent flux), less than 0.2% for LW radiances (std dev ≈0.1% or ≈0.3 W m−2 equivalent flux), and less than 0.2% (std dev ≈0.1%) for window channel radiances.

When three months (June, July, and August of 1998) of CERES Earth Radiation Budget Experiment (ERBE)-like unfiltered radiances from the Tropical Rainfall Measuring Mission satellite between 20°S and 20°N are compared with archived Earth Radiation Budget Satellite (ERBS) scanner measurements for the same months over a 5-yr period (1985–89), significant scene-type dependent differences are observed in the SW channel. Full-resolution CERES SW unfiltered radiances are ≈7.5% (≈3 W m−2 equivalent diurnal average flux) lower than ERBS over clear ocean, as compared with ≈1.7% (≈4 W m−2 equivalent diurnal average flux) for deep convective clouds and ≈6% (≈4–6 W m−2 equivalent diurnal average flux) for clear land and desert. This dependence on scene type is shown to be partly caused by differences in spatial resolution between CERES and ERBS and by errors in the unfiltering method used in ERBS. When the CERES measurements are spatially averaged to match the ERBS spatial resolution and the unfiltering scheme proposed in this study is applied to both CERES and ERBS, the ERBS all-sky SW radiances increase by ≈1.7%, and the CERES radiances are now consistently ≈3.5%–5% lower than the modified ERBS values for all scene types. Further study is needed to determine the cause for this remaining difference, and even calibration errors cannot be ruled out. CERES LW radiances are closer to ERBS values for individual scene types—CERES radiances are within ≈0.1% (≈0.3 W m−2) of ERBS over clear ocean and ≈0.5% (≈1.5 W m−2) over clear land and desert.

Full access