Search Results

You are looking at 1 - 10 of 23 items for :

  • Author or Editor: O. E. Smith x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Steven A. Ackerman
,
Ed W. Eloranta
,
Chris J. Grund
,
Robert O. Knuteson
,
Henry E. Revercomb
,
William L. Smith
, and
Donald P. Wylie

During the period of 26 October 1989 through 6 December 1989 a unique complement of measurements was made at the University of Wisconsin—Madison to study the radiative properties of cirrus clouds. Simultaneous observations were obtained from a scanning lidar, two interferometers, a high spectral resolution lidar, geostationary and polar orbiting satellites, radiosonde launches, and a whole-sky imager. This paper describes the experiment, the instruments deployed, and, as an example, the data collected during one day of the experiment.

Full access
Jose A. Marengo
,
Luiz E.O.C. Aragão
,
Peter M. Cox
,
Richard Betts
,
Duarte Costa
,
Neil Kaye
,
Lauren T. Smith
,
Lincoln M. Alves
, and
Vera Reis
Full access
William L. Smith
,
R. O. Knuteson
,
H. E. Revercomb
,
W. Feltz
,
H. B. Howell
,
W. P. Menzel
,
N. R. Nalli
,
Otis Brown
,
James Brown
,
Peter Minnett
, and
Walter McKeown

The Atmospheric Emitted Radiance Interferometer (AERI) was used to measure the infrared radiative properties and the temperature of the Gulf of Mexico during a 5-day oceanographic cruise in January 1995. The ocean skin temperature was measured with an accuracy believed to be better than 0.1 °C. The surface reflectivity/emissivity was determined as a function of view angle and sea state. The radiative properties are in good theoretical consistency with in situ measurements of ocean bulk temperature and the meteorological observations made from the oceanographic vessel. The AERI and in situ measurements provide a strong basis for accurate global specifications of sea surface temperature and ocean heat flux from satellites and ships.

Full access
W. L. Smith
,
H. E. Rvercomb
,
H. B. Howell
,
H. M. Woolf
,
R. O. Knuteson
,
R G. Decker
,
M. J. Lynch
,
E. R. Westwater
,
R. G. Strauch
,
K. P. Moran
,
B. Stankov
,
M. J. Falls
,
J. Jordan
,
M. Jacobsen
,
W. F. Dabberdt
,
R. McBeth
,
G. Albright
,
C. Paneitz
,
G. Wright
,
P. T. May
, and
M. T. Decker

During the week 29 October–4 November 1988, a Ground-based Atmospheric Profiling Experiment (GAPEX) was conducted at Denver Stapleton International Airport. The objective of GAPEX was to acquire and analyze atomspheric-temperature and moisture-profile data from state-of-the-art remote sensors. The sensors included a six-spectral-channel, passive Microwave Profiler (MWP), a passive, infrared High-Resolution Interferometer Sounder (HIS) that provides more than 1500 spectral channels, and an active Radio Acoustic Sounding System (RASS). A Cross-Chain Loran Atmospheric Sounding System (CLASS) was used to provide research-quality in situ thermodynamic observations to verify the accuracy and resolution characteristics of each of the three remote sensors. The first results of the project are presented here to inform the meteorological community of the progress achieved during the GAPEX field phase. These results also serve to demonstrate the excellent prospects for an accurate, continuous thermodynamic profiling system to complement NOAA's forthcoming operational wind profiler.

Full access
G. de Boer
,
C. Diehl
,
J. Jacob
,
A. Houston
,
S. W. Smith
,
P. Chilson
,
D. G. Schmale III
,
J. Intrieri
,
J. Pinto
,
J. Elston
,
D. Brus
,
O. Kemppinen
,
A. Clark
,
D. Lawrence
,
S. C. C. Bailey
,
M.P. Sama
,
A. Frazier
,
C. Crick
,
V. Natalie
,
E. Pillar-Little
,
P. Klein
,
S. Waugh
,
J. K. Lundquist
,
L. Barbieri
,
S. T. Kral
,
A. A. Jensen
,
C. Dixon
,
S. Borenstein
,
D. Hesselius
,
K. Human
,
P. Hall
,
B. Argrow
,
T. Thornberry
,
R. Wright
, and
J. T. Kelly
Full access
D. R. Feldman
,
A. C. Aiken
,
W. R. Boos
,
R. W. H. Carroll
,
V. Chandrasekar
,
S. Collis
,
J. M. Creamean
,
G. de Boer
,
J. Deems
,
P. J. DeMott
,
J. Fan
,
A. N. Flores
,
D. Gochis
,
M. Grover
,
T. C. J. Hill
,
A. Hodshire
,
E. Hulm
,
C. C. Hume
,
R. Jackson
,
F. Junyent
,
A. Kennedy
,
M. Kumjian
,
E. J. T. Levin
,
J. D. Lundquist
,
J. O’Brien
,
M. S. Raleigh
,
J. Reithel
,
A. Rhoades
,
K. Rittger
,
W. Rudisill
,
Z. Sherman
,
E. Siirila-Woodburn
,
S. M. Skiles
,
J. N. Smith
,
R. C. Sullivan
,
A. Theisen
,
M. Tuftedal
,
A. C. Varble
,
A. Wiedlea
,
S. Wielandt
,
K. Williams
, and
Z. Xu

Abstract

The science of mountainous hydrology spans the atmosphere through the bedrock and inherently crosses physical and disciplinary boundaries: land–atmosphere interactions in complex terrain enhance clouds and precipitation, while watersheds retain and release water over a large range of spatial and temporal scales. Limited observations in complex terrain challenge efforts to improve predictive models of the hydrology in the face of rapid changes. The Upper Colorado River exemplifies these challenges, especially with ongoing mismatches between precipitation, snowpack, and discharge. Consequently, the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) user facility has deployed an observatory to the East River Watershed near Crested Butte, Colorado, between September 2021 and June 2023 to measure the main atmospheric drivers of water resources, including precipitation, clouds, winds, aerosols, radiation, temperature, and humidity. This effort, called the Surface Atmosphere Integrated Field Laboratory (SAIL), is also working in tandem with DOE-sponsored surface and subsurface hydrologists and other federal, state, and local partners. SAIL data can be benchmarks for model development by producing a wide range of observational information on precipitation and its associated processes, including those processes that impact snowpack sublimation and redistribution, aerosol direct radiative effects in the atmosphere and in the snowpack, aerosol impacts on clouds and precipitation, and processes controlling surface fluxes of energy and mass. Preliminary data from SAIL’s first year showcase the rich information content in SAIL’s many datastreams and support testing hypotheses that will ultimately improve scientific understanding and predictability of Upper Colorado River hydrology in 2023 and beyond.

Open access
S. T. Martin
,
P. Artaxo
,
L. Machado
,
A. O. Manzi
,
R. A. F. Souza
,
C. Schumacher
,
J. Wang
,
T. Biscaro
,
J. Brito
,
A. Calheiros
,
K. Jardine
,
A. Medeiros
,
B. Portela
,
S. S. de Sá
,
K. Adachi
,
A. C. Aiken
,
R. Albrecht
,
L. Alexander
,
M. O. Andreae
,
H. M. J. Barbosa
,
P. Buseck
,
D. Chand
,
J. M. Comstock
,
D. A. Day
,
M. Dubey
,
J. Fan
,
J. Fast
,
G. Fisch
,
E. Fortner
,
S. Giangrande
,
M. Gilles
,
A. H. Goldstein
,
A. Guenther
,
J. Hubbe
,
M. Jensen
,
J. L. Jimenez
,
F. N. Keutsch
,
S. Kim
,
C. Kuang
,
A. Laskin
,
K. McKinney
,
F. Mei
,
M. Miller
,
R. Nascimento
,
T. Pauliquevis
,
M. Pekour
,
J. Peres
,
T. Petäjä
,
C. Pöhlker
,
U. Pöschl
,
L. Rizzo
,
B. Schmid
,
J. E. Shilling
,
M. A. Silva Dias
,
J. N. Smith
,
J. M. Tomlinson
,
J. Tóta
, and
M. Wendisch

Abstract

The Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraft to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.

Full access
I. A. Renfrew
,
R. S. Pickart
,
K. Våge
,
G. W. K. Moore
,
T. J. Bracegirdle
,
A. D. Elvidge
,
E. Jeansson
,
T. Lachlan-Cope
,
L. T. McRaven
,
L. Papritz
,
J. Reuder
,
H. Sodemann
,
A. Terpstra
,
S. Waterman
,
H. Valdimarsson
,
A. Weiss
,
M. Almansi
,
F. Bahr
,
A. Brakstad
,
C. Barrell
,
J. K. Brooke
,
B. J. Brooks
,
I. M. Brooks
,
M. E. Brooks
,
E. M. Bruvik
,
C. Duscha
,
I. Fer
,
H. M. Golid
,
M. Hallerstig
,
I. Hessevik
,
J. Huang
,
L. Houghton
,
S. Jónsson
,
M. Jonassen
,
K. Jackson
,
K. Kvalsund
,
E. W. Kolstad
,
K. Konstali
,
J. Kristiansen
,
R. Ladkin
,
P. Lin
,
A. Macrander
,
A. Mitchell
,
H. Olafsson
,
A. Pacini
,
C. Payne
,
B. Palmason
,
M. D. Pérez-Hernández
,
A. K. Peterson
,
G. N. Petersen
,
M. N. Pisareva
,
J. O. Pope
,
A. Seidl
,
S. Semper
,
D. Sergeev
,
S. Skjelsvik
,
H. Søiland
,
D. Smith
,
M. A. Spall
,
T. Spengler
,
A. Touzeau
,
G. Tupper
,
Y. Weng
,
K. D. Williams
,
X. Yang
, and
S. Zhou

Abstract

The Iceland Greenland Seas Project (IGP) is a coordinated atmosphere–ocean research program investigating climate processes in the source region of the densest waters of the Atlantic meridional overturning circulation. During February and March 2018, a field campaign was executed over the Iceland and southern Greenland Seas that utilized a range of observing platforms to investigate critical processes in the region, including a research vessel, a research aircraft, moorings, sea gliders, floats, and a meteorological buoy. A remarkable feature of the field campaign was the highly coordinated deployment of the observing platforms, whereby the research vessel and aircraft tracks were planned in concert to allow simultaneous sampling of the atmosphere, the ocean, and their interactions. This joint planning was supported by tailor-made convection-permitting weather forecasts and novel diagnostics from an ensemble prediction system. The scientific aims of the IGP are to characterize the atmospheric forcing and the ocean response of coupled processes; in particular, cold-air outbreaks in the vicinity of the marginal ice zone and their triggering of oceanic heat loss, and the role of freshwater in the generation of dense water masses. The campaign observed the life cycle of a long-lasting cold-air outbreak over the Iceland Sea and the development of a cold-air outbreak over the Greenland Sea. Repeated profiling revealed the immediate impact on the ocean, while a comprehensive hydrographic survey provided a rare picture of these subpolar seas in winter. A joint atmosphere–ocean approach is also being used in the analysis phase, with coupled observational analysis and coordinated numerical modeling activities underway.

Open access
J. K. Andersen
,
Liss M. Andreassen
,
Emily H. Baker
,
Thomas J. Ballinger
,
Logan T. Berner
,
Germar H. Bernhard
,
Uma S. Bhatt
,
Jarle W. Bjerke
,
Jason E. Box
,
L. Britt
,
R. Brown
,
David Burgess
,
John Cappelen
,
Hanne H. Christiansen
,
B. Decharme
,
C. Derksen
,
D. S. Drozdov
,
Howard E. Epstein
,
L. M. Farquharson
,
Sinead L. Farrell
,
Robert S. Fausto
,
Xavier Fettweis
,
Vitali E. Fioletov
,
Bruce C. Forbes
,
Gerald V. Frost
,
Sebastian Gerland
,
Scott J. Goetz
,
Jens-Uwe Grooß
,
Edward Hanna
,
Inger Hanssen-Bauer
,
Stefan Hendricks
,
Iolanda Ialongo
,
K. Isaksen
,
Bjørn Johnsen
,
L. Kaleschke
,
A. L. Kholodov
,
Seong-Joong Kim
,
Jack Kohler
,
Zachary Labe
,
Carol Ladd
,
Kaisa Lakkala
,
Mark J. Lara
,
Bryant Loomis
,
Bartłomiej Luks
,
K. Luojus
,
Matthew J. Macander
,
G. V. Malkova
,
Kenneth D. Mankoff
,
Gloria L. Manney
,
J. M. Marsh
,
Walt Meier
,
Twila A. Moon
,
Thomas Mote
,
L. Mudryk
,
F. J. Mueter
,
Rolf Müller
,
K. E. Nyland
,
Shad O’Neel
,
James E. Overland
,
Don Perovich
,
Gareth K. Phoenix
,
Martha K. Raynolds
,
C. H. Reijmer
,
Robert Ricker
,
Vladimir E. Romanovsky
,
E. A. G. Schuur
,
Martin Sharp
,
Nikolai I. Shiklomanov
,
C. J. P. P. Smeets
,
Sharon L. Smith
,
Dimitri A. Streletskiy
,
Marco Tedesco
,
Richard L. Thoman
,
J. T. Thorson
,
X. Tian-Kunze
,
Mary-Louise Timmermans
,
Hans Tømmervik
,
Mark Tschudi
,
Dirk van As
,
R. S. W. van de Wal
,
Donald A. Walker
,
John E. Walsh
,
Muyin Wang
,
Melinda Webster
,
Øyvind Winton
,
Gabriel J. Wolken
,
K. Wood
,
Bert Wouters
, and
S. Zador
Free access
Brian J. Butterworth
,
Ankur R. Desai
,
Philip A. Townsend
,
Grant W. Petty
,
Christian G. Andresen
,
Timothy H. Bertram
,
Eric L. Kruger
,
James K. Mineau
,
Erik R. Olson
,
Sreenath Paleri
,
Rosalyn A. Pertzborn
,
Claire Pettersen
,
Paul C. Stoy
,
Jonathan E. Thom
,
Michael P. Vermeuel
,
Timothy J. Wagner
,
Daniel B. Wright
,
Ting Zheng
,
Stefan Metzger
,
Mark D. Schwartz
,
Trevor J. Iglinski
,
Matthias Mauder
,
Johannes Speidel
,
Hannes Vogelmann
,
Luise Wanner
,
Travis J. Augustine
,
William O. J. Brown
,
Steven P. Oncley
,
Michael Buban
,
Temple R. Lee
,
Patricia Cleary
,
David J. Durden
,
Christopher R. Florian
,
Kathleen Lantz
,
Laura D. Riihimaki
,
Joseph Sedlar
,
Tilden P. Meyers
,
David M. Plummer
,
Eliceo Ruiz Guzman
,
Elizabeth N. Smith
,
Matthias Sühring
,
David D. Turner
,
Zhien Wang
,
Loren D. White
, and
James M. Wilczak

Abstract

The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a High-Density Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science Foundation project based on an intensive field campaign that occurred from June to October 2019. The purpose of the study is to examine how the atmospheric boundary layer (ABL) responds to spatial heterogeneity in surface energy fluxes. One of the main objectives is to test whether lack of energy balance closure measured by eddy covariance (EC) towers is related to mesoscale atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface energy fluxes, with the aim to improve model–data comparison and integration. To address these questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was deployed over a 10 km × 10 km domain of a heterogeneous forest ecosystem in the Chequamegon–Nicolet National Forest in northern Wisconsin, United States, centered on an existing 447-m tower that anchors an AmeriFlux/NOAA supersite (US-PFa/WLEF). The project deployed one of the world’s highest-density networks of above-canopy EC measurements of surface energy fluxes. This tower EC network was coupled with spatial measurements of EC fluxes from aircraft; maps of leaf and canopy properties derived from airborne spectroscopy, ground-based measurements of plant productivity, phenology, and physiology; and atmospheric profiles of wind, water vapor, and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and radiosondes. These observations are being used with large-eddy simulation and scaling experiments to better understand submesoscale processes and improve formulations of subgrid-scale processes in numerical weather and climate models.

Open access