Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: O. H. DANIEL x
  • Refine by Access: All Content x
Clear All Modify Search
O. H. DANIEL, H. W. BRANDLI, and J. ERNST

Abstract

No Abstract Available.

Full access
Christopher J. Anderson, Raymond W. Arritt, Zaitao Pan, Eugene S. Takle, William J. Gutowski Jr., Francis O. Otieno, Renato da Silva, Daniel Caya, Jens H. Christensen, Daniel Lüthi, Miguel A. Gaertner, Clemente Gallardo, Filippo Giorgi, René Laprise, Song-You Hong, Colin Jones, H-M. H. Juang, J. J. Katzfey, John L. McGregor, William M. Lapenta, Jay W. Larson, John A. Taylor, Glen E. Liston, Roger A. Pielke Sr., and John O. Roads

Abstract

Thirteen regional climate model (RCM) simulations of June–July 1993 were compared with each other and observations. Water vapor conservation and precipitation characteristics in each RCM were examined for a 10° × 10° subregion of the upper Mississippi River basin, containing the region of maximum 60-day accumulated precipitation in all RCMs and station reports.

All RCMs produced positive precipitation minus evapotranspiration (PE > 0), though most RCMs produced PE below the observed range. RCM recycling ratios were within the range estimated from observations. No evidence of common errors of E was found. In contrast, common dry bias of P was found in the simulations.

Daily cycles of terms in the water vapor conservation equation were qualitatively similar in most RCMs. Nocturnal maximums of P and C (convergence) occurred in 9 of 13 RCMs, consistent with observations. Three of the four driest simulations failed to couple P and C overnight, producing afternoon maximum P. Further, dry simulations tended to produce a larger fraction of their 60-day accumulated precipitation from low 3-h totals.

In station reports, accumulation from high (low) 3-h totals had a nocturnal (early morning) maximum. This time lag occurred, in part, because many mesoscale convective systems had reached peak intensity overnight and had declined in intensity by early morning. None of the RCMs contained such a time lag. It is recommended that short-period experiments be performed to examine the ability of RCMs to simulate mesoscale convective systems prior to generating long-period simulations for hydroclimatology.

Full access
Mary C. Barth, Christopher A. Cantrell, William H. Brune, Steven A. Rutledge, James H. Crawford, Heidi Huntrieser, Lawrence D. Carey, Donald MacGorman, Morris Weisman, Kenneth E. Pickering, Eric Bruning, Bruce Anderson, Eric Apel, Michael Biggerstaff, Teresa Campos, Pedro Campuzano-Jost, Ronald Cohen, John Crounse, Douglas A. Day, Glenn Diskin, Frank Flocke, Alan Fried, Charity Garland, Brian Heikes, Shawn Honomichl, Rebecca Hornbrook, L. Gregory Huey, Jose L. Jimenez, Timothy Lang, Michael Lichtenstern, Tomas Mikoviny, Benjamin Nault, Daniel O’Sullivan, Laura L. Pan, Jeff Peischl, Ilana Pollack, Dirk Richter, Daniel Riemer, Thomas Ryerson, Hans Schlager, Jason St. Clair, James Walega, Petter Weibring, Andrew Weinheimer, Paul Wennberg, Armin Wisthaler, Paul J. Wooldridge, and Conrad Ziegler

Abstract

The Deep Convective Clouds and Chemistry (DC3) field experiment produced an exceptional dataset on thunderstorms, including their dynamical, physical, and electrical structures and their impact on the chemical composition of the troposphere. The field experiment gathered detailed information on the chemical composition of the inflow and outflow regions of midlatitude thunderstorms in northeast Colorado, west Texas to central Oklahoma, and northern Alabama. A unique aspect of the DC3 strategy was to locate and sample the convective outflow a day after active convection in order to measure the chemical transformations within the upper-tropospheric convective plume. These data are being analyzed to investigate transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by lightning, relationships between lightning flash rates and storm parameters, chemistry in the upper troposphere that is affected by the convection, and related source characterization of the three sampling regions. DC3 also documented biomass-burning plumes and the interactions of these plumes with deep convection.

Full access
Annmarie G. Carlton, Joost de Gouw, Jose L. Jimenez, Jesse L. Ambrose, Alexis R. Attwood, Steven Brown, Kirk R. Baker, Charles Brock, Ronald C. Cohen, Sylvia Edgerton, Caroline M. Farkas, Delphine Farmer, Allen H. Goldstein, Lynne Gratz, Alex Guenther, Sherri Hunt, Lyatt Jaeglé, Daniel A. Jaffe, John Mak, Crystal McClure, Athanasios Nenes, Thien Khoi Nguyen, Jeffrey R. Pierce, Suzane de Sa, Noelle E. Selin, Viral Shah, Stephanie Shaw, Paul B. Shepson, Shaojie Song, Jochen Stutz, Jason D. Surratt, Barbara J. Turpin, Carsten Warneke, Rebecca A. Washenfelder, Paul O. Wennberg, and Xianling Zhou

Abstract

The Southeast Atmosphere Studies (SAS), which included the Southern Oxidant and Aerosol Study (SOAS); the Southeast Nexus (SENEX) study; and the Nitrogen, Oxidants, Mercury and Aerosols: Distributions, Sources and Sinks (NOMADSS) study, was deployed in the field from 1 June to 15 July 2013 in the central and eastern United States, and it overlapped with and was complemented by the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. SAS investigated atmospheric chemistry and the associated air quality and climate-relevant particle properties. Coordinated measurements from six ground sites, four aircraft, tall towers, balloon-borne sondes, existing surface networks, and satellites provide in situ and remotely sensed data on trace-gas composition, aerosol physicochemical properties, and local and synoptic meteorology. Selected SAS findings indicate 1) dramatically reduced NOx concentrations have altered ozone production regimes; 2) indicators of “biogenic” secondary organic aerosol (SOA), once considered part of the natural background, were positively correlated with one or more indicators of anthropogenic pollution; and 3) liquid water dramatically impacted particle scattering while biogenic SOA did not. SAS findings suggest that atmosphere–biosphere interactions modulate ambient pollutant concentrations through complex mechanisms and feedbacks not yet adequately captured in atmospheric models. The SAS dataset, now publicly available, is a powerful constraint to develop predictive capability that enhances model representation of the response and subsequent impacts of changes in atmospheric composition to changes in emissions, chemistry, and meteorology.

Open access
Brian J. Butterworth, Ankur R. Desai, Stefan Metzger, Philip A. Townsend, Mark D. Schwartz, Grant W. Petty, Matthias Mauder, Hannes Vogelmann, Christian G. Andresen, Travis J. Augustine, Timothy H. Bertram, William O. J. Brown, Michael Buban, Patricia Cleary, David J. Durden, Christopher R. Florian, Trevor J. Iglinski, Eric L. Kruger, Kathleen Lantz, Temple R. Lee, Tilden P. Meyers, James K. Mineau, Erik R. Olson, Steven P. Oncley, Sreenath Paleri, Rosalyn A. Pertzborn, Claire Pettersen, David M. Plummer, Laura D. Riihimaki, Eliceo Ruiz Guzman, Joseph Sedlar, Elizabeth N. Smith, Johannes Speidel, Paul C. Stoy, Matthias Sühring, Jonathan E. Thom, David D. Turner, Michael P. Vermeuel, Timothy J. Wagner, Zhien Wang, Luise Wanner, Loren D. White, James M. Wilczak, Daniel B. Wright, and Ting Zheng

Abstract

The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a High-Density Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science Foundation project based on an intensive field campaign that occurred from June to October 2019. The purpose of the study is to examine how the atmospheric boundary layer (ABL) responds to spatial heterogeneity in surface energy fluxes. One of the main objectives is to test whether lack of energy balance closure measured by eddy covariance (EC) towers is related to mesoscale atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface energy fluxes, with the aim to improve model–data comparison and integration. To address these questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was deployed over a 10 km × 10 km domain of a heterogeneous forest ecosystem in the Chequamegon–Nicolet National Forest in northern Wisconsin, United States, centered on an existing 447-m tower that anchors an AmeriFlux/NOAA supersite (US-PFa/WLEF). The project deployed one of the world’s highest-density networks of above-canopy EC measurements of surface energy fluxes. This tower EC network was coupled with spatial measurements of EC fluxes from aircraft; maps of leaf and canopy properties derived from airborne spectroscopy, ground-based measurements of plant productivity, phenology, and physiology; and atmospheric profiles of wind, water vapor, and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and radiosondes. These observations are being used with large-eddy simulation and scaling experiments to better understand submesoscale processes and improve formulations of subgrid-scale processes in numerical weather and climate models.

Open access