Search Results

You are looking at 1 - 10 of 19 items for :

  • Author or Editor: P. Kollias x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Mariko Oue
,
Katia Lamer
,
Edward P. Luke
,
Zhuocan Xu
,
Fan Yang
,
Zeen Zhu
, and
Pavlos Kollias
Open access
P. Kollias
,
E. E. Clothiaux
,
M. A. Miller
,
B. A. Albrecht
,
G. L. Stephens
, and
T. P. Ackerman

During the past 20 yr there has been substantial progress on the development and application of millimeter-wavelength (3.2 and 8.6 mm, corresponding to frequencies of 94 and 35 GHz) radars in atmospheric cloud research, boosted by continuous advancements in radar technology and the need to better understand clouds and their role in the Earth's climate. Applications of millimeter-wavelength radars range from detailed cloud and precipitation process studies to long-term monitoring activities that strive to improve our understanding of cloud processes over a wide range of spatial and temporal scales. These activities are the result of a long period of successful research, starting from the 1980s, in which research tools and sophisticated retrieval techniques were developed, tested, and evaluated in field experiments. This paper presents a cohesive, chronological overview of millimeter-wavelength radar advancements during this period and describes the potential of new applications of millimeter-wavelength radars on sophisticated platforms and the benefits of both lower- and higher-frequency radars for cloud and precipitation research.

Full access
Michael P. Jensen
,
James H. Flynn
,
Laura M. Judd
,
Pavlos Kollias
,
Chongai Kuang
,
Greg Mcfarquhar
,
Raj Nadkarni
,
Heath Powers
, and
John Sullivan
Full access
Katia Lamer
,
Edward P. Luke
,
Brian Walsh Jr.
,
Steven Andrade
,
Zackary Mages
,
Zeen Zhu
,
Erin Leghart
,
Bernat P. Treserras
,
Ann Emrick
,
Pavlos Kollias
,
Andrew Vogelmann
, and
Martin Schoonen

Abstract

The Brookhaven National Laboratory Center for Multiscale Applied Sensing (CMAS) aims to address environmental equity needs in the context of a changing climate. As a first step toward this goal, the center developed a one-of-a-kind observatory tailored to the study of highly heterogeneous urban environments. This article describes the features of the mobile observatory that enable its rapid deployment either on or off the power grid, as well as its instrument payload. Beyond its unique design, the observatory optimizes data collection within the obstacle-laden urban environment using a new smart sampling paradigm. This setup facilitated the collection of previously poorly documented environmental properties, including wind profiles throughout the atmospheric column. The mobile observatory captured unique observations during its first few intensive observation periods. Vertical air motion and infrared temperature measurements collected along the faces of the supertall One Vanderbilt skyscraper in Manhattan, NY, reveal how solar and anthropogenic heating affect wind flow and thus the venting of heat, pollution, and contaminants in urban street canyons. Also, air temperature measurements collected during travel along a 150-km transect between Upton and Manhattan, NY, offer a high-resolution view of the urban heat island and reveal that temperature disparities also exist within the city across different neighborhoods. Ultimately, the datasets collected by CMAS are poised to help guide equitable urban planning by highlighting existing disparities and characterizing the impact of urban features on the urban microclimate with the goal of improving human comfort.

Full access

A Focus On Mixed-Phase Clouds

The Status of Ground-Based Observational Methods

Matthew D. Shupe
,
John S. Daniel
,
Gijs de Boer
,
Edwin W. Eloranta
,
Pavlos Kollias
,
Charles N. Long
,
Edward P. Luke
,
David D. Turner
, and
Johannes Verlinde

The phase composition and microphysical structure of clouds define the manner in which they modulate atmospheric radiation and contribute to the hydrologic cycle. Issues regarding cloud phase partitioning and transformation come to bear directly in mixed-phase clouds, and have been difficult to address within current modeling frameworks. Ground-based, remote-sensing observations of mixed-phase clouds can contribute a significant body of knowledge with which to better understand, and thereby more accurately model, clouds and their phase-defining processes. Utilizing example observations from the Mixed-Phase Arctic Cloud Experiment (M-PACE), which occurred at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program's Climate Research Facility in Barrow, Alaska, during autumn 2004, we review the current status of ground-based observation and retrieval methods used in characterizing the macrophysical, microphysical, radiative, and dynamical properties of stratiform mixed-phase clouds. In general, cloud phase, boundaries, ice properties, liquid water path, optical depth, and vertical velocity are available from a combination of active and passive sensors. Significant deficiencies exist in our ability to vertically characterize the liquid phase, to distinguish ice crystal habits, and to understand aerosol-cloud interactions. Further validation studies are needed to evaluate, improve, and expand our retrieval abilities in mixed-phase clouds.

Full access
Virendra P. Ghate
,
Pavlos Kollias
,
Susanne Crewell
,
Ann M. Fridlind
,
Thijs Heus
,
Ulrich Löehnert
,
Maximilian Maahn
,
Greg M. McFarquhar
,
Dmitri Moisseev
,
Mariko Oue
,
Manfred Wendisch
, and
Christopher Williams
Full access
P. Kollias
,
N. Bharadwaj
,
E. E. Clothiaux
,
K. Lamer
,
M. Oue
,
J. Hardin
,
B. Isom
,
I. Lindenmaier
,
A. Matthews
,
E. P. Luke
,
S. E. Giangrande
,
K. Johnson
,
S. Collis
,
J. Comstock
, and
J. H. Mather
Full access
P. Kollias
,
N. Bharadwaj
,
E. E. Clothiaux
,
K. Lamer
,
M. Oue
,
J. Hardin
,
B. Isom
,
I. Lindenmaier
,
A. Matthews
,
E. P. Luke
,
S. E. Giangrande
,
K. Johnson
,
S. Collis
,
J. Comstock
, and
J. H. Mather

Abstract

Improving our ability to predict future weather and climate conditions is strongly linked to achieving significant advancements in our understanding of cloud and precipitation processes. Observations are critical to making these advancements because they both improve our understanding of these processes and provide constraints on numerical models. Historically, instruments for observing cloud properties have limited cloud–aerosol investigations to a small subset of cloud-process interactions. To address these challenges, the last decade has seen the U.S. DOE ARM facility significantly upgrade and expand its surveillance radar capabilities toward providing holistic and multiscale observations of clouds and precipitation. These upgrades include radars that operate at four frequency bands covering a wide range of scattering regimes, improving upon the information contained in earlier ARM observations. The traditional ARM emphasis on the vertical column is maintained, providing more comprehensive, calibrated, and multiparametric measurements of clouds and precipitation. In addition, the ARM radar network now features multiple scanning dual-polarization Doppler radars to exploit polarimetric and multi-Doppler capabilities that provide a wealth of information on storm microphysics and dynamics under a wide range of conditions. Although the diversity in wavelengths and detection capabilities are unprecedented, there is still considerable work ahead before the full potential of these radar advancements is realized. This includes synergy with other observations, improved forward and inverse modeling methods, and well-designed data–model integration methods. The overarching goal is to provide a comprehensive characterization of a complete volume of the cloudy atmosphere and to act as a natural laboratory for the study of cloud processes.

Free access
Holger Siebert
,
Kai-Erik Szodry
,
Ulrike Egerer
,
Birgit Wehner
,
Silvia Henning
,
Karine Chevalier
,
Janine Lückerath
,
Oliver Welz
,
Kay Weinhold
,
Felix Lauermann
,
Matthias Gottschalk
,
André Ehrlich
,
Manfred Wendisch
,
Paulo Fialho
,
Greg Roberts
,
Nithin Allwayin
,
Simeon Schum
,
Raymond A. Shaw
,
Claudio Mazzoleni
,
Lynn Mazzoleni
,
Jakub L. Nowak
,
Szymon P. Malinowski
,
Katarzyna Karpinska
,
Wojciech Kumala
,
Dominika Czyzewska
,
Edward P. Luke
,
Pavlos Kollias
,
Robert Wood
, and
Juan Pedro Mellado

Abstract

We report on the Azores Stratocumulus Measurements of Radiation, Turbulence and Aerosols (ACORES) campaign, which took place around Graciosa and Pico Islands/Azores in July 2017. The main objective was to investigate the vertical distribution of aerosol particles, stratocumulus microphysical and radiative properties, and turbulence parameters in the eastern North Atlantic. The vertical exchange of mass, momentum, and energy between the free troposphere (FT) and the cloudy marine boundary layer (MBL) was explored over a range of scales from submeters to kilometers. To cover these spatial scales with appropriate measurements, helicopter-borne observations with unprecedented high resolution were realized using the Airborne Cloud Turbulence Observation System (ACTOS) and Spectral Modular Airborne Radiation Measurement System–Helicopter-Borne Observations (SMART-HELIOS) instrumental payloads. The helicopter-borne observations were combined with ground-based aerosol measurements collected at two continuously running field stations on Pico Mountain (2,225 m above sea level, in the FT), and at the Atmospheric Radiation Measurement (ARM) station on Graciosa (at sea level). First findings from the ACORES observations we are discussing in the paper are as follows: (i) we have observed a high variability of the turbulent cloud-top structure on horizontal scales below 100 m with local temperature gradients of up to 4 K over less than 1 m vertical distance, (ii) we have collected strictly collocated radiation measurements supporting the relevance of small-scale processes by revealing significant inhomogeneities in cloud-top brightness temperature to scales well below 100 m, and (iii) we have concluded that aerosol properties are completely different in the MBL and FT with often-complex stratification and frequently observed burst-like new particle formation.

Full access
A. J. Illingworth
,
A. Battaglia
,
J. Bradford
,
M. Forsythe
,
P. Joe
,
P. Kollias
,
K. Lean
,
M. Lori
,
J.-F. Mahfouf
,
S. Melo
,
R Midthassel
,
Y. Munro
,
J. Nicol
,
R. Potthast
,
M. Rennie
,
T. H. M. Stein
,
S. Tanelli
,
F. Tridon
,
C. J. Walden
, and
M. Wolde

Abstract

This paper presents a conically scanning spaceborne Dopplerized 94-GHz radar Earth science mission concept: Wind Velocity Radar Nephoscope (WIVERN). WIVERN aims to provide global measurements of in-cloud winds using the Doppler-shifted radar returns from hydrometeors. The conically scanning radar could provide wind data with daily revisits poleward of 50°, 50-km horizontal resolution, and approximately 1-km vertical resolution. The measured winds, when assimilated into weather forecasts and provided they are representative of the larger-scale mean flow, should lead to further improvements in the accuracy and effectiveness of forecasts of severe weather and better focusing of activities to limit damage and loss of life. It should also be possible to characterize the more variable winds associated with local convection. Polarization diversity would be used to enable high wind speeds to be unambiguously observed; analysis indicates that artifacts associated with polarization diversity are rare and can be identified. Winds should be measurable down to 1 km above the ocean surface and 2 km over land. The potential impact of the WIVERN winds on reducing forecast errors is estimated by comparison with the known positive impact of cloud motion and aircraft winds. The main thrust of WIVERN is observing in-cloud winds, but WIVERN should also provide global estimates of ice water content, cloud cover, and vertical distribution, continuing the data series started by CloudSat with the conical scan giving increased coverage. As with CloudSat, estimates of rainfall and snowfall rates should be possible. These nonwind products may also have a positive impact when assimilated into weather forecasts.

Open access