Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Paolo Di Girolamo x
  • Refine by Access: All Content x
Clear All Modify Search
Simone Lolli and Paolo Di Girolamo

Abstract

Developing a reliable cost-effective instrument network for data measurement is a challenging task for agency decisionmakers. A simple way to fully characterize the performances of an instrument that also considers economical and operational factors—price, maintenance cost, lifetime, etc.—currently does not exist. Through principal component analysis, a method is developed to build a composite index that assigns a single score to each instrument, taking into account all the scientific, economic, and operational aspects. This index will then represent solid help in building and optimizing a cost-effective network, bridging the gap between two very different worlds: the scientific need for precision and economic constraints.

Full access
Christian Herold, Dietrich Althausen, Detlef Müller, Matthias Tesche, Patric Seifert, Ronny Engelmann, Cyrille Flamant, Rohini Bhawar, and Paolo Di Girolamo

Abstract

Water vapor measurements with the multiwavelength Raman lidar Backscatter Extinction Lidar-Ratio Temperature Humidity Profiling Apparatus (BERTHA) were performed during the Convective and Orographically-induced Precipitation Study (COPS) in the Black Forest, Germany, from June to August 2007. For quality assurance, profiles of the water vapor mixing ratio measured with BERTHA are compared to simultaneous measurements of a radiosonde and an airborne differential absorption lidar (DIAL) on 31 July 2007. The differences from the radiosonde observations are found to be on average 1.5% and 2.5% in the residual layer and in the free troposphere, respectively. During the two overflights at 1937 and 2018 UTC, the differences from the DIAL results are −2.2% and −3.7% in the residual layer and 2.1% and −2.6% in the free troposphere. After this performance check, short-range forecasts from the German Meteorological Service’s (Deutscher Wetterdienst, DWD) version of the Consortium for Small-Scale Modeling (COSMO-DE) model are compared to the BERTHA measurements for two case studies. Generally, it is found that water vapor mixing ratios from short-range forecasts are on average 7.9% drier than the values measured in the residual layer. In the free troposphere, modeled values are 9.7% drier than the measurements.

Full access
Tammy M. Weckwerth, Lindsay J. Bennett, L. Jay Miller, Joël Van Baelen, Paolo Di Girolamo, Alan M. Blyth, and Tracy J. Hertneky

Abstract

A case study of orographic convection initiation (CI) that occurred along the eastern slopes of the Vosges Mountains in France on 6 August 2007 during the Convective and Orographically-Induced Precipitation Study (COPS) is presented. Global positioning system (GPS) receivers and two Doppler on Wheels (DOW) mobile radars sampled the preconvective and storm environments and were respectively used to retrieve three-dimensional tomographic water vapor and wind fields. These retrieved data were supplemented with temperature, moisture, and winds from radiosondes from a site in the eastern Rhine Valley. High-resolution numerical simulations with the Weather Research and Forecasting (WRF) Model were used to further investigate the physical processes leading to convective precipitation.

This unique, time-varying combination of derived water vapor and winds from observations illustrated an increase in low-level moisture and convergence between upslope easterlies and downslope westerlies along the eastern slope of the Vosges Mountains. Uplift associated with these shallow, colliding boundary layer flows eventually led to the initiation of moist convection. WRF reproduced many features of the observed complicated flow, such as cyclonic (anticyclonic) flow around the southern (northern) end of the Vosges Mountains and the east-side convergent flow below the ridgeline. The WRF simulations also illustrated spatial and temporal variability in buoyancy and the removal of the lids prior to convective development. The timing and location of CI from the WRF simulations was surprisingly close to that observed.

Full access
Belay Demoz, Cyrille Flamant, Tammy Weckwerth, David Whiteman, Keith Evans, Frédéric Fabry, Paolo Di Girolamo, David Miller, Bart Geerts, William Brown, Geary Schwemmer, Bruce Gentry, Wayne Feltz, and Zhien Wang

Abstract

A detailed analysis of the structure of a double dryline observed over the Oklahoma panhandle during the first International H2O Project (IHOP_2002) convective initiation (CI) mission on 22 May 2002 is presented. A unique and unprecedented set of high temporal and spatial resolution measurements of water vapor mixing ratio, wind, and boundary layer structure parameters were acquired using the National Aeronautics and Space Administration (NASA) scanning Raman lidar (SRL), the Goddard Lidar Observatory for Winds (GLOW), and the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE), respectively. These measurements are combined with the vertical velocity measurements derived from the National Center for Atmospheric Research (NCAR) Multiple Antenna Profiler Radar (MAPR) and radar structure function from the high-resolution University of Massachusetts frequency-modulated continuous-wave (FMCW) radar to reveal the evolution and structure of the late afternoon double-dryline boundary layer. The eastern dryline advanced and then retreated over the Homestead profiling site in the Oklahoma panhandle, providing conditions ripe for a detailed observation of the small-scale variability within the boundary layer and the dryline. In situ aircraft data, dropsonde and radiosonde data, along with NCAR S-band dual-polarization Doppler radar (S-Pol) measurements, are also used to provide the larger-scale picture of the double-dryline environment.

Moisture and temperature jumps of about 3 g kg−1 and 1–2 K, respectively, were observed across the eastern radar fine line (dryline), more than the moisture jumps (1–2 g kg−1) observed across the western radar fine line (secondary dryline). Most updraft plumes observed were located on the moist side of the eastern dryline with vertical velocities exceeding 3 m s−1 and variable horizontal widths of 2–5 km, although some were as wide as 7–8 km. These updrafts were up to 1.5 g kg−1 moister than the surrounding environment.

Although models suggested deep convection over the Oklahoma panhandle and several cloud lines were observed near the dryline, the dryline itself did not initiate any storms over the intensive observation region (IOR). Possible reasons for this lack of convection are discussed. Strong capping inversion and moisture detrainment between the lifting condensation level and the level of free convection related to an overriding drier air, together with the relatively small near-surface moisture values (less than 10 g kg−1), were detrimental to CI in this case.

Full access
Véronique Ducrocq, Isabelle Braud, Silvio Davolio, Rossella Ferretti, Cyrille Flamant, Agustin Jansa, Norbert Kalthoff, Evelyne Richard, Isabelle Taupier-Letage, Pierre-Alain Ayral, Sophie Belamari, Alexis Berne, Marco Borga, Brice Boudevillain, Olivier Bock, Jean-Luc Boichard, Marie-Noëlle Bouin, Olivier Bousquet, Christophe Bouvier, Jacopo Chiggiato, Domenico Cimini, Ulrich Corsmeier, Laurent Coppola, Philippe Cocquerez, Eric Defer, Julien Delanoë, Paolo Di Girolamo, Alexis Doerenbecher, Philippe Drobinski, Yann Dufournet, Nadia Fourrié, Jonathan J. Gourley, Laurent Labatut, Dominique Lambert, Jérôme Le Coz, Frank S. Marzano, Gilles Molinié, Andrea Montani, Guillaume Nord, Mathieu Nuret, Karim Ramage, William Rison, Odile Roussot, Frédérique Said, Alfons Schwarzenboeck, Pierre Testor, Joël Van Baelen, Béatrice Vincendon, Montserrat Aran, and Jorge Tamayo

The Mediterranean region is frequently affected by heavy precipitation events associated with flash floods, landslides, and mudslides that cause hundreds of millions of euros in damages per year and, often, casualties. A major field campaign was devoted to heavy precipitation and f lash f loods from 5 September to 6 November 2012 within the framework of the 10-yr international Hydrological Cycle in the Mediterranean Experiment (HyMeX) dedicated to the hydrological cycle and related high-impact events. The 2-month field campaign took place over the northwestern Mediterranean Sea and its surrounding coastal regions in France, Italy, and Spain. The observation strategy of the field experiment was devised to improve knowledge of the following key components leading to heavy precipitation and flash flooding in the region: 1) the marine atmospheric f lows that transport moist and conditionally unstable air toward the coasts, 2) the Mediterranean Sea acting as a moisture and energy source, 3) the dynamics and microphysics of the convective systems producing heavy precipitation, and 4) the hydrological processes during flash floods. This article provides the rationale for developing this first HyMeX field experiment and an overview of its design and execution. Highlights of some intensive observation periods illustrate the potential of the unique datasets collected for process understanding, model improvement, and data assimilation.

Full access