Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Patrick A. Harr x
  • Predictability and Dynamics of Weather Systems in the Atlantic-European Sector (PANDOWAE) x
  • Refine by Access: All Content x
Clear All Modify Search
Julia H. Keller
,
Sarah C. Jones
, and
Patrick A. Harr

Abstract

The extratropical transition (ET) of Hurricane Hanna (2008) and Typhoon Choi-Wan (2009) caused a variety of forecast scenarios in the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS). The dominant development scenarios are extracted for two ensemble forecasts initialized prior to the ET of those tropical storms, using an EOF and fuzzy clustering analysis. The role of the transitioning tropical cyclone and its impact on the midlatitude flow in the distinct forecast scenarios is examined by conducting an analysis of the eddy kinetic energy budget in the framework of downstream baroclinic development. This budget highlights sources and sinks of eddy kinetic energy emanating from the transitioning tropical cyclone or adjacent upstream midlatitude flow features. By comparing the budget for several forecast scenarios for the ET of each of the two tropical cyclones, the role of the transitioning storms on the development in downstream regions is investigated. Distinct features during the interaction between the tropical cyclone and the midlatitude flow turned out to be important. In the case of Hurricane Hanna, the duration of baroclinic conversion from eddy available potential into eddy kinetic energy was important for the amplification of the midlatitude wave pattern and the subsequent reintensification of Hanna as an extratropical cyclone. In the case of Typhoon Choi-Wan, the phasing between the storm and the midlatitude flow was one of the most critical factors for the future development.

Full access

Observations of the Eyewall Structure of Typhoon Sinlaku (2008) during the Transformation Stage of Extratropical Transition

Annette M. Foerster
,
Michael M. Bell
,
Patrick A. Harr
, and
Sarah C. Jones

Abstract

A unique dataset observing the life cycle of Typhoon Sinlaku was collected during The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC) in 2008. In this study observations of the transformation stage of the extratropical transition of Sinlaku are analyzed. Research flights with the Naval Research Laboratory P-3 and the U.S. Air Force WC-130 aircraft were conducted in the core region of Sinlaku. Data from the Electra Doppler Radar (ELDORA), dropsondes, aircraft flight level, and satellite atmospheric motion vectors were analyzed with the recently developed Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation (SAMURAI) software with a 1-km horizontal- and 0.5-km vertical-node spacing. The SAMURAI analysis shows marked asymmetries in the structure of the core region in the radar reflectivity and three-dimensional wind field. The highest radar reflectivities were found in the left of shear semicircle, and maximum ascent was found in the downshear left quadrant. Initial radar echos were found slightly upstream of the downshear direction and downdrafts were primarily located in the upshear semicircle, suggesting that individual cells in Sinlaku’s eyewall formed in the downshear region, matured as they traveled downstream, and decayed in the upshear region. The observed structure is consistent with previous studies of tropical cyclones in vertical wind shear, suggesting that the eyewall convection is primarily shaped by increased vertical wind shear during step 2 of the transformation stage, as was hypothesized by Klein et al. A transition from active convection upwind to stratiform precipitation downwind is similar to that found in the principal rainband of more intense tropical cyclones.

Full access
Julian F. Quinting
,
Michael M. Bell
,
Patrick A. Harr
, and
Sarah C. Jones

Abstract

The structure and the environment of Typhoon Sinlaku (2008) were investigated during its life cycle in The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC). On 20 September 2008, during the transformation stage of Sinlaku’s extratropical transition (ET), research aircraft equipped with dual-Doppler radar and dropsondes documented the structure of the convection surrounding Sinlaku and low-level frontogenetical processes. The observational data obtained were assimilated with the recently developed Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation (SAMURAI) software tool. The resulting analysis provides detailed insight into the ET system and allows specific features of the system to be identified, including deep convection, a stratiform precipitation region, warm- and cold-frontal structures, and a dry intrusion. The analysis offers valuable information about the interaction of the features identified within the transitioning tropical cyclone. The existence of dry midlatitude air above warm-moist tropical air led to strong potential instability. Quasigeostrophic diagnostics suggest that forced ascent during warm frontogenesis triggered the deep convective development in this potentially unstable environment. The deep convection itself produced a positive potential vorticity anomaly at midlevels that modified the environmental flow. A comparison of the operational ECMWF analysis and the observation-based SAMURAI analysis exhibits important differences. In particular, the ECMWF analysis does not capture the deep convection adequately. The nonexistence of the deep convection has considerable implications on the potential vorticity structure of the remnants of the typhoon at midlevels. An inaccurate representation of the thermodynamic structure of the dry intrusion has considerable implications on the frontogenesis and the quasigeostrophic forcing.

Full access
Julia H. Keller
,
Christian M. Grams
,
Michael Riemer
,
Heather M. Archambault
,
Lance Bosart
,
James D. Doyle
,
Jenni L. Evans
,
Thomas J. Galarneau Jr.
,
Kyle Griffin
,
Patrick A. Harr
,
Naoko Kitabatake
,
Ron McTaggart-Cowan
,
Florian Pantillon
,
Julian F. Quinting
,
Carolyn A. Reynolds
,
Elizabeth A. Ritchie
,
Ryan D. Torn
, and
Fuqing Zhang

Abstract

The extratropical transition (ET) of tropical cyclones often has an important impact on the nature and predictability of the midlatitude flow. This review synthesizes the current understanding of the dynamical and physical processes that govern this impact and highlights the relationship of downstream development during ET to high-impact weather, with a focus on downstream regions. It updates a previous review from 2003 and identifies new and emerging challenges and future research needs. First, the mechanisms through which the transitioning cyclone impacts the midlatitude flow in its immediate vicinity are discussed. This “direct impact” manifests in the formation of a jet streak and the amplification of a ridge directly downstream of the cyclone. This initial flow modification triggers or amplifies a midlatitude Rossby wave packet, which disperses the impact of ET into downstream regions (downstream impact) and may contribute to the formation of high-impact weather. Details are provided concerning the impact of ET on forecast uncertainty in downstream regions and on the impact of observations on forecast skill. The sources and characteristics of the following key features and processes that may determine the manifestation of the impact of ET on the midlatitude flow are discussed: the upper-tropospheric divergent outflow, mainly associated with latent heat release in the troposphere below, and the phasing between the transitioning cyclone and the midlatitude wave pattern. Improving the representation of diabatic processes during ET in models and a climatological assessment of the ET’s impact on downstream high-impact weather are examples for future research directions.

Open access