Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Paul A. Dirmeyer x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All Modify Search
Paul A. Dirmeyer
Subhadeep Halder


When initial soil moisture is perturbed among ensemble members in the operational NWS global forecast model, surface latent and sensible fluxes are immediately affected much more strongly, systematically, and over a greater area than conventional land–atmosphere coupling metrics suggest. Flux perturbations are likewise transmitted to the atmospheric boundary layer more formidably than climatology-based metrics would indicate. Impacts are not limited to the traditional land–atmosphere coupling hot spots, but extend over nearly all ice-free land areas of the globe. Key to isolating this effect is that initial atmospheric states are identical among quantities correlated, pinpointing soil moisture and snow cover. A consequence of this high sensitivity is that significant positive impacts of realistic land surface initialization on the skill of deterministic near-surface temperature and humidity forecasts are also immediate and nearly universal during boreal spring and summer (the period investigated) and persist for at least 3 days over most land areas. Land surface initialization may be more broadly important for weather forecasts than previously realized, as the research focus historically has been on subseasonal-to-seasonal time scales. This study attempts to bridge the gap between climate studies with their associated coupling assessments and weather forecast time scales. Furthermore, errors in land surface initialization and shortcomings in the parameterization of atmospheric processes sensitive to surface fluxes may have greater consequences than previously recognized, the latter exemplified by the lack of impact on precipitation forecasts even though the simulation of boundary layer development is shown to be greatly improved with realistic soil moisture initialization.

Full access