Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Paul D. Smith x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Paul D. Williams
,
Nicola J. Howe
,
Jonathan M. Gregory
,
Robin S. Smith
, and
Manoj M. Joshi

Abstract

In climate simulations, the impacts of the subgrid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the subgrid variability in a computationally inexpensive manner. This study shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere–ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a nonzero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations.

Full access
Steven C. Hardiman
,
Ian A. Boutle
,
Andrew C. Bushell
,
Neal Butchart
,
Mike J. P. Cullen
,
Paul R. Field
,
Kalli Furtado
,
James C. Manners
,
Sean F. Milton
,
Cyril Morcrette
,
Fiona M. O’Connor
,
Ben J. Shipway
,
Chris Smith
,
David N. Walters
,
Martin R. Willett
,
Keith D. Williams
,
Nigel Wood
,
N. Luke Abraham
,
James Keeble
,
Amanda C. Maycock
,
John Thuburn
, and
Matthew T. Woodhouse

Abstract

A warm bias in tropical tropopause temperature is found in the Met Office Unified Model (MetUM), in common with most models from phase 5 of CMIP (CMIP5). Key dynamical, microphysical, and radiative processes influencing the tropical tropopause temperature and lower-stratospheric water vapor concentrations in climate models are investigated using the MetUM. A series of sensitivity experiments are run to separate the effects of vertical advection, ice optical and microphysical properties, convection, cirrus clouds, and atmospheric composition on simulated tropopause temperature and lower-stratospheric water vapor concentrations in the tropics. The numerical accuracy of the vertical advection, determined in the MetUM by the choice of interpolation and conservation schemes used, is found to be particularly important. Microphysical and radiative processes are found to influence stratospheric water vapor both through modifying the tropical tropopause temperature and through modifying upper-tropospheric water vapor concentrations, allowing more water vapor to be advected into the stratosphere. The representation of any of the processes discussed can act to significantly reduce biases in tropical tropopause temperature and stratospheric water vapor in a physical way, thereby improving climate simulations.

Full access