Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Paul M. Markowski x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All Modify Search
Paul M. Markowski

Abstract

Two long-lived tornadic supercells were sampled by an automobile-borne observing system on 3 May 1999. The “mobile mesonet” observed relatively warm and moist air, weak baroclinity, and small pressure excess at the surface within the rear-flank downdrafts of the storms. Furthermore, the downdraft air parcels, which have been shown to enter the tornado in past observational and modeling studies, were associated with substantial convective available potential energy and small convective inhibition. The detection of only small equivalent potential temperature deficits (1–4 K) within the downdrafts may imply that the downdrafts were driven primarily by nonhydrostatic pressure gradients and/or precipitation drag, rather than by the entrainment of potentially cold environmental air at midlevels.

Full access
Michael Colbert
,
David J. Stensrud
,
Paul M. Markowski
, and
Yvette P. Richardson

Abstract

In support of the Next Generation Global Prediction System (NGGPS) project, processes leading to convection initiation in the North American Mesoscale Forecast System, version 3 (NAMv3) are explored. Two severe weather outbreaks—occurring over the southeastern United States on 28 April 2014 and the central Great Plains on 6 May 2015—are forecast retrospectively using the NAMv3 CONUS (4 km) and Fire Weather (1.33 km) nests, each with 5-min output. Points of convection initiation are identified, and patterns leading to convection initiation in the model forecasts are determined. Results indicate that in the 30 min preceding convection initiation at a grid point, upward motion at low levels of the atmosphere enables a parcel to rise to its level of free convection, above which it is accelerated by the buoyancy force. A moist absolutely unstable layer (MAUL) typically is produced at the top of the updraft. However, when strong updrafts are collocated with large vertical gradients of potential temperature and moisture, noisy vertical profiles of temperature, moisture, and hydrometeor concentration develop beneath the rising MAUL. The noisy profiles found in this study are qualitatively similar to those that resulted in NAMv3 failures during simulations of Hurricane Joaquin in 2015. The CM1 cloud model is used to reproduce these noisy profiles, and results indicate that the noise can be mitigated by including explicit vertical diffusion in the model. Left unchecked, the noisy profiles are shown to impact convective storm features such as cold pools, precipitation, updraft helicity intensity and tracks, and the initiation of spurious convection.

Full access