Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Paul Poli x
  • Refine by Access: All Content x
Clear All Modify Search
Paul Poli, Hans Hersbach, Dick P. Dee, Paul Berrisford, Adrian J. Simmons, Frédéric Vitart, Patrick Laloyaux, David G. H. Tan, Carole Peubey, Jean-Noël Thépaut, Yannick Trémolet, Elías V. Hólm, Massimo Bonavita, Lars Isaksen, and Michael Fisher


The ECMWF twentieth century reanalysis (ERA-20C; 1900–2010) assimilates surface pressure and marine wind observations. The reanalysis is single-member, and the background errors are spatiotemporally varying, derived from an ensemble. The atmospheric general circulation model uses the same configuration as the control member of the ERA-20CM ensemble, forced by observationally based analyses of sea surface temperature, sea ice cover, atmospheric composition changes, and solar forcing. The resulting climate trend estimations resemble ERA-20CM for temperature and the water cycle. The ERA-20C water cycle features stable precipitation minus evaporation global averages and no spurious jumps or trends. The assimilation of observations adds realism on synoptic time scales as compared to ERA-20CM in regions that are sufficiently well observed. Comparing to nighttime ship observations, ERA-20C air temperatures are 1 K colder. Generally, the synoptic quality of the product and the agreement in terms of climate indices with other products improve with the availability of observations. The MJO mean amplitude in ERA-20C is larger than in 20CR version 2c throughout the century, and in agreement with other reanalyses such as JRA-55. A novelty in ERA-20C is the availability of observation feedback information. As shown, this information can help assess the product’s quality on selected time scales and regions.

Full access
Stefan Brönnimann, Rob Allan, Christopher Atkinson, Roberto Buizza, Olga Bulygina, Per Dahlgren, Dick Dee, Robert Dunn, Pedro Gomes, Viju O. John, Sylvie Jourdain, Leopold Haimberger, Hans Hersbach, John Kennedy, Paul Poli, Jouni Pulliainen, Nick Rayner, Roger Saunders, Jörg Schulz, Alexander Sterin, Alexander Stickler, Holly Titchner, Maria Antonia Valente, Clara Ventura, and Clive Wilkinson


Global dynamical reanalyses of the atmosphere and ocean fundamentally rely on observations, not just for the assimilation (i.e., for the definition of the state of the Earth system components) but also in many other steps along the production chain. Observations are used to constrain the model boundary conditions, for the calibration or uncertainty determination of other observations, and for the evaluation of data products. This requires major efforts, including data rescue (for historical observations), data management (including metadatabases), compilation and quality control, and error estimation. The work on observations ideally occurs one cycle ahead of the generation cycle of reanalyses, allowing the reanalyses to make full use of it. In this paper we describe the activities within ERA-CLIM2, which range from surface, upper-air, and Southern Ocean data rescue to satellite data recalibration and from the generation of snow-cover products to the development of a global station data metadatabase. The project has not produced new data collections. Rather, the data generated has fed into global repositories and will serve future reanalysis projects. The continuation of this effort is first contingent upon the organization of data rescue and also upon a series of targeted research activities to address newly identified in situ and satellite records.

Open access
Paul Poli, Dick P. Dee, Roger Saunders, Viju O. John, Peter Rayer, Jörg Schulz, Kenneth Holmlund, Dorothee Coppens, Dieter Klaes, James E. Johnson, Asghar E. Esfandiari, Irina V. Gerasimov, Emily B. Zamkoff, Atheer F. Al-Jazrawi, David Santek, Mirko Albani, Pascal Brunel, Karsten Fennig, Marc Schröder, Shinya Kobayashi, Dieter Oertel, Wolfgang Döhler, Dietrich Spänkuch, and Stephan Bojinski


To better understand the impacts of climate change, environmental monitoring capabilities must be enhanced by deploying additional and more accurate satellite- and ground-based (including in situ) sensors. In addition, reanalysis of observations collected decades ago but long forgotten can unlock precious information about the recent past. Historical, in situ observations mainly cover densely inhabited areas and frequently traveled routes. In contrast, large selections of early meteorological satellite data, waiting to be exploited today, provide information about remote areas unavailable from any other source. When initially collected, these satellite data posed great challenges to transmission and archiving facilities. As a result, data access was limited to the main teams of scientific investigators associated with the instruments. As archive media have aged, so have the mission scientists and other pioneers of satellite meteorology, who sometimes retired in possession of unique and unpublished information.

This paper presents examples of recently recovered satellite data records, including satellite imagery, early infrared hyperspectral soundings, and early microwave humidity soundings. Their value for climate applications today can be realized using methods and techniques that were not yet available when the data were first collected, including efficient and accurate observation simulators and data assimilation into reanalyses. Modern technical infrastructure allows serving entire mission datasets online, enabling easy access and exploration by a broad range of users, including new and old generations of climate scientists.

Full access