Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Pavel Romashkin x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Laura L. Pan, Kenneth P. Bowman, Elliot L. Atlas, Steve C. Wofsy, Fuqing Zhang, James F. Bresch, Brian A. Ridley, Jasna V. Pittman, Cameron R. Homeyer, Pavel Romashkin, and William A. Cooper

The Stratosphere–Troposphere Analyses of Regional Transport 2008 (START08) experiment investigated a number of important processes in the extratropical upper troposphere and lower stratosphere (UTLS) using the National Science Foundation (NSF)–NCAR Gulfstream V (GV) research aircraft. The main objective was to examine the chemical structure of the extratropical UTLS in relation to dynamical processes spanning a range of scales. The campaign was conducted during April–June 2008 from Broomfield, Colorado. A total of 18 research flights sampled an extensive geographical region of North America (25°–65°N, 80°–120°W) and a wide range of meteorological conditions. The airborne in situ instruments measured a comprehensive suite of chemical constituents and microphysical variables from the boundary layer to the lower stratosphere, with flights specifically designed to target key transport processes in the extratropical UTLS. The flights successfully investigated stratosphere–troposphere exchange (STE) processes, including the intrusion of tropospheric air into the stratosphere in association with the secondary tropopause and the intrusion of stratospheric air deep into the troposphere. The flights also sampled the influence of convective transport and lightning on the upper troposphere as well as the distribution of gravity waves associated with multiple sources, including fronts and topography. The aircraft observations are complemented by satellite observations and modeling. The measurements will be used to improve the representation of UTLS chemical gradients and transport in Chemistry–Climate models (CCMs). This article provides an overview of the experiment design and selected observational highlights.

Full access
Morris L. Weisman, Robert J. Trapp, Glen S. Romine, Chris Davis, Ryan Torn, Michael Baldwin, Lance Bosart, John Brown, Michael Coniglio, David Dowell, A. Clark Evans, Thomas J. Galarneau Jr., Julie Haggerty, Terry Hock, Kevin Manning, Paul Roebber, Pavel Romashkin, Russ Schumacher, Craig S. Schwartz, Ryan Sobash, David Stensrud, and Stanley B. Trier

Abstract

The Mesoscale Predictability Experiment (MPEX) was conducted from 15 May to 15 June 2013 in the central United States. MPEX was motivated by the basic question of whether experimental, subsynoptic observations can extend convective-scale predictability and otherwise enhance skill in short-term regional numerical weather prediction.

Observational tools for MPEX included the National Science Foundation (NSF)–National Center for Atmospheric Research (NCAR) Gulfstream V aircraft (GV), which featured the Airborne Vertical Atmospheric Profiling System mini-dropsonde system and a microwave temperature-profiling (MTP) system as well as several ground-based mobile upsonde systems. Basic operations involved two missions per day: an early morning mission with the GV, well upstream of anticipated convective storms, and an afternoon and early evening mission with the mobile sounding units to sample the initiation and upscale feedbacks of the convection.

A total of 18 intensive observing periods (IOPs) were completed during the field phase, representing a wide spectrum of synoptic regimes and convective events, including several major severe weather and/or tornado outbreak days. The novel observational strategy employed during MPEX is documented herein, as is the unique role of the ensemble modeling efforts—which included an ensemble sensitivity analysis—to both guide the observational strategies and help address the potential impacts of such enhanced observations on short-term convective forecasting. Preliminary results of retrospective data assimilation experiments are discussed, as are data analyses showing upscale convective feedbacks.

Full access