Search Results
You are looking at 1 - 1 of 1 items for :
- Author or Editor: Peter B. Gibson x
- Review Article x
- Refine by Access: All Content x
Abstract
Despite the sophistication of global climate models (GCMs), their coarse spatial resolution limits their ability to resolve important aspects of climate variability and change at the local scale. Both dynamical and empirical methods are used for enhancing the resolution of climate projections through downscaling, each with distinct advantages and challenges. Dynamical downscaling is physics based but comes with a large computational cost, posing a barrier for downscaling an ensemble of GCMs large enough for reliable uncertainty quantification of climate risks. In contrast, empirical downscaling, which encompasses statistical and machine learning techniques, provides a computationally efficient alternative to downscaling GCMs. Empirical downscaling algorithms can be developed to emulate the behavior of dynamical models directly, or through frameworks such as perfect prognosis in which relationships are established between large-scale atmospheric conditions and local weather variables using observational data. However, the ability of empirical downscaling algorithms to apply their learned relationships out of distribution into future climates remains uncertain, as is their ability to represent certain types of extreme events. This review covers the growing potential of machine learning methods to address these challenges, offering a thorough exploration of the current applications and training strategies that can circumvent certain issues. Additionally, we propose an evaluation framework for machine learning algorithms specific to the problem of climate downscaling as needed to improve transparency and foster trust in climate projections.
Significance Statement
This review offers a significant contribution to our understanding of how machine learning can offer a transformative change in climate downscaling. It serves as a guide to navigate recent advances in machine learning and how these advances can be better aligned toward inherent challenges in climate downscaling. In this review, we provide an overview of these recent advances with a critical discussion of their advantages and limitations. We also discuss opportunities to refine existing machine learning methods alongside new approaches for the generation of large ensembles of high-resolution climate projections.
Abstract
Despite the sophistication of global climate models (GCMs), their coarse spatial resolution limits their ability to resolve important aspects of climate variability and change at the local scale. Both dynamical and empirical methods are used for enhancing the resolution of climate projections through downscaling, each with distinct advantages and challenges. Dynamical downscaling is physics based but comes with a large computational cost, posing a barrier for downscaling an ensemble of GCMs large enough for reliable uncertainty quantification of climate risks. In contrast, empirical downscaling, which encompasses statistical and machine learning techniques, provides a computationally efficient alternative to downscaling GCMs. Empirical downscaling algorithms can be developed to emulate the behavior of dynamical models directly, or through frameworks such as perfect prognosis in which relationships are established between large-scale atmospheric conditions and local weather variables using observational data. However, the ability of empirical downscaling algorithms to apply their learned relationships out of distribution into future climates remains uncertain, as is their ability to represent certain types of extreme events. This review covers the growing potential of machine learning methods to address these challenges, offering a thorough exploration of the current applications and training strategies that can circumvent certain issues. Additionally, we propose an evaluation framework for machine learning algorithms specific to the problem of climate downscaling as needed to improve transparency and foster trust in climate projections.
Significance Statement
This review offers a significant contribution to our understanding of how machine learning can offer a transformative change in climate downscaling. It serves as a guide to navigate recent advances in machine learning and how these advances can be better aligned toward inherent challenges in climate downscaling. In this review, we provide an overview of these recent advances with a critical discussion of their advantages and limitations. We also discuss opportunities to refine existing machine learning methods alongside new approaches for the generation of large ensembles of high-resolution climate projections.