Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Peter Clark x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Terry L. Clark
,
Teddie Keller
,
Janice Coen
,
Peter Neilley
,
Hsiao-ming Hsu
, and
William D. Hall

Abstract

Numerical simulations of terrain-induced turbulence associated with airflow over Lantau Island of Hong Kong are presented. Lantau is a relatively small island with three narrow peaks rising to between 700 and 950 m above mean sea level. This research was undertaken as part of a project to better understand and predict the nature of turbulence and shear at the new airport site on the island of Chek Lap Kok, which is located to the lee of Lantau. Intensive ground and aerial observations were taken from May through June 1994, during the Lantau Experiment (LANTEX). This paper focuses on flow associated with the passage of Tropical Storm Russ on 7 June 1994, during which severe turbulence was observed.

The nature of the environmental and topographic forcing on 7 June 1994 resulted in the turbulence and shear being dominated by the combination of topographic effects and surface friction. High-resolution numerical simulations, initialized using local sounding data, were performed using the Clark model. The simulation results indicate that gravity-wave dynamics played a very minor role in the flow distortion and generation of turbulence. As a result of this flow regime, relatively high vertical and horizontal resolution was required to simulate the mechanically generated turbulence associated with Tropical Storm Russ.

Results are presented using a vertical resolution of 10 m near the surface and with horizontal resolutions of both 125 and 62.5 m over local, nested domains of about 13–24 km on a side. The 125-m model resolution simulated highly distorted flow in the lee of Lantau, with streaks emanating downstream from regions of sharp orographic gradients. At this resolution the streaks were nearly steady in time. At the higher horizontal resolution of 62.5 m the streaks became unstable, resulting in eddies advecting downstream within a distorted streaky mean flow similar to the 125-m resolution simulation. The temporally averaged fields changed little with the increase in resolution; however, there was a three- to fourfold increase in the temporal variability of the flow, as indicated by the standard deviation of the wind from a 10-min temporal average. Overall, the higher resolution simulations compared quite well with the observations, whereas the lower resolution cases did not. The high-resolution experiments also showed a much broader horizontal and vertical extent for the transient eddies. The depth of orographic influence increased from about 200 m to over 600 m with the increase in resolution. A physical explanation, using simple linear arguments based on the blocking effects of the eddies, is presented. The nature of the flow separation is analyzed using Bernoulli’s energy form to display the geometry of the separation bubbles. The height of the 80 m2 s−2 energy surface shows eddies forming in regions of large orographic gradients and advecting downstream.

Tests using both buoyancy excitation and stochastic backscatter to parameterize the underresolved dynamics at the 125-m resolution are presented, as well as one experiment testing the influence of static stability suppressing turbulence development. All these tests showed no significant effect. Implications of these results to the parameterization of mechanically induced turbulence in complex terrain are discussed.

Full access
Jian-Feng Gu
,
Robert Stephen Plant
,
Christopher E. Holloway
,
Todd R. Jones
,
Alison Stirling
,
Peter A. Clark
,
Steven J. Woolnough
, and
Thomas L. Webb

Abstract

In this study, bulk mass flux formulations for turbulent fluxes are evaluated for shallow and deep convection using large-eddy simulation data. The bulk mass flux approximation neglects two sources of variability: the interobject variability due to differences between the average properties of different cloud objects, and the intraobject variability due to perturbations within each cloud object. Using a simple cloud–environment decomposition, the interobject and intraobject contributions to the heat flux are comparable in magnitude with that from the bulk mass flux approximation, but do not share a similar vertical distribution, and so cannot be parameterized with a rescaling method. A downgradient assumption is also not appropriate to parameterize the neglected flux contributions because a nonnegligible part is associated with nonlocal buoyant structures. A spectral analysis further suggests the presence of fine structures within the clouds. These points motivate investigations in which the vertical transports are decomposed based on the distribution of vertical velocity. As a result, a “core-cloak” conceptual model is proposed to improve the representation of total vertical fluxes, composed of a strong and a weak draft for both the updrafts and downdrafts. It is shown that the core-cloak representation can well capture the magnitude and vertical distribution of heat and moisture fluxes for both shallow and deep convection.

Open access