Search Results

You are looking at 1 - 10 of 12 items for :

  • Author or Editor: Peter S. Ray x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Peter S. Ray

Abstract

No abstract available.

Full access
Peter S. Ray
Full access
Peter S. Ray
Full access
Peter S. Ray
Full access
Tina J. Cartwright
and
Peter S. Ray

Abstract

Atmospheric warming from cloud heating has a major affect on worldwide atmospheric circulations and climate. Studies have shown that the dominant source for cloud heating is the phase change of water. The location and magnitude of cloud heating has a substantial impact on atmospheric circulations. Therefore, identifying the location of phase changes provides information necessary for accurate modeling of atmospheric circulations and climate.

Radar reflectivity is a signature predominantly produced from rain formed from condensation, the primary process that produces heating. Through the application of principal component analysis on a nonhydrostatic cloud model, heating, and derived reflectivity data, a technique to illustrate a future heating algorithm capable of estimating cloud heating from reflectivity data is examined. Formative, intensifying, and mature stages of a Convection and Precipitation Electrification Experiment squall-type convective system were used to demonstrate these results. The accuracy of the technique’s estimates for the mean convective and stratiform profiles to within 1.0 K h−1 on average throughout the vertical column shows the merit of this statistical technique. The use of this type of technique in conjunction with the network of NEXRAD and spaceborne radars could provide valuable data for applications ranging from cumulus parameterization to 4D data assimilation and model initialization.

Full access
Peter S. Ray
,
Alan Robinson
, and
Ying Lin

Abstract

During the Taiwan Area Mesoscale Experiment (TAMEX), three Doppler radars complemented enhanced surface and upper-air observations. The focus of the experiment was to better understand the interaction of the terrain with precipitation systems in the production of the important heavy rainfall. The intensive operational period (IOP) number 8 extended from 1400 IST (local standard time) 7 June 1987 until 0800 LST 9 June 1987. During this time, a mesoscale convective system (MCS) formed in the Straits of Taiwan and moved inland. It was interrogated by many observing instruments, including three Doppler radars, over a 6-h period. During this time the front moved through the radar network. The front was shallow and the precipitation widespread, both ahead of and behind the front. The front was only 1.6-km deep over a distance of 100 km.

Using velocity-azimuth display (VAD) data, a portion of the frontogenetic function was computed during the times the front was in the vicinity of the radar. The increase in both convergence and deformation contributed to large values of the frontogenetic function.

Dynamic retrieval was also attempted on the data during the time when the front was most favorably located for analysis. The results are very similar to what has been observed both for tropical squall lines and for midlatitude squall lines.

Full access
J. Marshall Shepherd
,
Brad S. Ferrier
, and
Peter S. Ray

Abstract

Central Florida is the ideal test laboratory for studying convergence zone–induced convection. The region regularly experiences sea-breeze fronts and rainfall-induced outflow boundaries. The focus of this study is convection associated with the commonly occurring convergence zone established by the interaction of the sea-breeze front and an outflow boundary. Previous studies have investigated mechanisms primarily affecting storm initiation by such convergence zones. Few have focused on rainfall morphology, yet these storms contribute a significant amount of precipitation to the annual rainfall budget. Low-level convergence and midtropospheric moisture have been shown to be correlated with rainfall amounts in Florida. Using 2D and 3D numerical simulations, the roles of low-level convergence and midtropospheric moisture in rainfall evolution are examined.

The results indicate that area- and time-averaged, vertical moisture flux (VMF) at the sea-breeze front–outflow convergence zone is directly and linearly proportional to initial condensation rates. A similar relationship exists between VMF and initial rainfall. The VMF, which encompasses depth and magnitude of convergence, is better correlated to initial rainfall production than surface moisture convergence. This extends early observational studies that linked rainfall in Florida to surface moisture convergence. The amount and distribution of midtropospheric moisture affects how much rainfall associated with secondary cells develop. Rainfall amount and efficiency varied significantly over an observable range of relative humidities in the 850–500-mb layer even though rainfall evolution was similar during the initial or “first cell” period. Rainfall variability was attributed to drier midtropospheric environments inhibiting secondary cell development through entrainment effects. Observationally, a 850–500-mb moisture structure exhibits wider variability than lower-level moisture, which is virtually always present in Florida. A likely consequence of the variability in 850–500-mb moisture is a stronger statistical correlation to rainfall as noted in previous observational studies.

The VMF at convergence zones is critical in determining rainfall in the initial stage of development but plays a decreasing role in rainfall evolution as the system matures. The midtropospheric moisture (e.g., environment) plays an increasing role in rainfall evolution as the system matures. This suggests the need to improve measurements of depth and magnitude of convergence and midtropospheric moisture distribution. It also highlights that the influence of the environment needs to be better represented in convective parameterizations of larger-scale models to account for entrainment effects.

Full access
Ying Lin
,
Peter S. Ray
, and
Kenneth W. Johnson

Abstract

A method is developed to initialize convective storm simulations with Doppler radar-derived fields. Input fields for initialization include velocity, rainwater derived from radar reflectivity, and pressure and temperature fields obtained through thermodynamic retrieval. A procedure has been developed to fill in missing wind data, followed by a variational adjustment to the filled wind field to minimize “shocks” that would otherwise cause the simulated fields to deteriorate rapidly.

A series of experiments using data from a simulated storm establishes the feasibility of the initialization method. Multiple-Doppler radar observations from the 20 May 1977 Del City tornadic storm are used for the initialization experiments. Simulation results are shown and compared to observations taken at a later time. The simulated storm shows good agreement with the subsequent observations, though the simulated storm appears to be evolving faster than observed. Possible reasons for the discrepancies are discussed.

Full access
Paul E. Bieringer
,
Peter S. Ray
, and
Andrew J. Annunzio

Abstract

A study by Bieringer et al., which is Part I of this two-part study, demonstrated analytically using the shallow-water equations and numerically in controlled experiments that the presence of terrain can result in an enhancement of sensitivities to initial condition adjustments. The increased impact of adjustments to initial conditions corresponds with gradients in the flow field induced by the presence of the terrain obstacle. In cross-barrier flow situations the impact of the initial condition adjustments on the final forecast increases linearly as the height of the terrain obstacle increases. While this property associated with initial condition perturbations may be present in an analytic and controlled numerical environment, it is often difficult to realize these benefits in a more operationally realistic setting. This study extends the prior work to a situation with actual terrain, Doppler radar wind observations over the terrain, and observations from a surface mesonet for model verification. The results indicate that the downstream surface wind forecast was improved more when the initial conditions adjusted through the assimilation of Doppler radar data originated from areas with terrain gradients than from regions where the terrain was relatively flat. This result is consistent with the findings presented in Part I and suggests that when varying terrain elevation is present upstream of a target forecast area, a greater benefit (in terms of forecast accuracy) can be made by targeting additional observations in the regions containing variable terrain than regions where the terrain is relatively flat.

Full access
Paul E. Bieringer
,
Peter S. Ray
, and
Andrew J. Annunzio

Abstract

The concept of improving the accuracy of numerical weather forecasts by targeting additional meteorological observations in areas where the initial condition error is suspected to grow rapidly has been the topic of numerous studies and field programs. The challenge faced by this approach is that it typically requires a costly observation system that can be quickly adapted to place instrumentation where needed. The present study examines whether the underlying terrain in a mesoscale model influences model initial condition sensitivity and if knowledge of the terrain and corresponding predominant flow patterns for a region can be used to direct the placement of instrumentation. This follows the same concept on which earlier targeted observation approaches were based, but eliminates the need for an observation system that needs to be continually reconfigured. Simulations from the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and its adjoint are used to characterize the locations, variables, and magnitudes of initial condition perturbations that have the most significant impact on the surface wind forecast. This study examines a relatively simple case where an idealized mountain surrounded by a flat plain is located upwind of the forecast verification region. The results suggest that, when elevated terrain is present upstream of the target forecast area, the largest forecast impact (defined as the difference between the simulation with perturbed initial conditions and a control simulation where the initial condition was not perturbed) occurs when the initial analysis perturbations are made in regions with complex terrain.

Full access