Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Pierre F. J. Lermusiaux x
  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All Modify Search
Arthur J. Miller, Pierre F. J. Lermusiaux, and Pierre-Marie Poulain

Abstract

An array of current meter moorings along 12°W on the southern side of the lceland-Faeroe Ridge reveals a narrowband barotropic oscillation with period 1.8 days in spectra of velocity. The signal is coherent over at least 55-km scales and propagates phase with shallow water on the right (toward the northwest). Velocity ellipses tend to be elongated (crossing contours of f/H) and rotate anticyclonically. Solutions of the rigid-lid barotropic shallow-water equations predict the occurrence of a topographic-Rossby normal mode on the south side of the ridge with spatial scales exceeding 250 km and with intrinsic period near 1.84 days. This fundamental mode of the south side of the ridge has predicted spatial structure, phase propagation, and velocity ellipses consistent with the observed oscillation. The frictional amplitude e-folding decay time for this normal mode is estimated from the observations to be 13 days. The observed ocean currents are significantly coherent with zonal wind stress fluctuations (but not with wind stress curl) in the relevant period band, which indicates the oscillation is wind forced. This appears to be the first clear evidence of a stochastically forced resonant barotropic topographic-Rossby normal mode in the ocean.

Full access
Samuel M. Kelly, Pierre F. J. Lermusiaux, Timothy F. Duda, and Patrick J. Haley Jr.

Abstract

A hydrostatic, coupled-mode, shallow-water model (CSW) is described and used to diagnose and simulate tidal dynamics in the greater Mid-Atlantic Bight region. The reduced-physics model incorporates realistic stratification and topography, internal tide forcing from a priori estimates of the surface tide, and advection terms that describe first-order interactions of internal tides with slowly varying mean flow and mean buoyancy fields and their respective shear. The model is validated via comparisons with semianalytic models and nonlinear primitive equation models in several idealized and realistic simulations that include internal tide interactions with topography and mean flows. Then, 24 simulations of internal tide generation and propagation in the greater Mid-Atlantic Bight region are used to diagnose significant internal tide interactions with the Gulf Stream. The simulations indicate that locally generated mode-one internal tides refract and/or reflect at the Gulf Stream. The redirected internal tides often reappear at the shelf break, where their onshore energy fluxes are intermittent (i.e., noncoherent with surface tide) because meanders in the Gulf Stream alter their precise location, phase, and amplitude. These results provide an explanation for anomalous onshore energy fluxes that were previously observed at the New Jersey shelf break and linked to the irregular generation of nonlinear internal waves.

Full access