Search Results

You are looking at 1 - 10 of 10 items for :

  • Author or Editor: Pierre Kirstetter x
  • 12th International Precipitation Conference (IPC12) x
  • Refine by Access: All Content x
Clear All Modify Search
Veljko Petković
,
Marko Orescanin
,
Pierre Kirstetter
,
Christian Kummerow
, and
Ralph Ferraro

Abstract

A decades-long effort in observing precipitation from space has led to continuous improvements of satellite-derived passive microwave (PMW) large-scale precipitation products. However, due to a limited ability to relate observed radiometric signatures to precipitation type (convective and stratiform) and associated precipitation rate variability, PMW retrievals are prone to large systematic errors at instantaneous scales. The present study explores the use of deep learning approach in extracting the information content from PMW observation vectors to help identify precipitation types. A deep learning neural network model (DNN) is developed to retrieve the convective type in precipitating systems from PMW observations. A 12-month period of Global Precipitation Measurement mission Microwave Imager (GMI) observations is used as a dataset for model development and verification. The proposed DNN model is shown to accurately predict precipitation types for 85% of total precipitation volume. The model reduces precipitation rate bias associated with convective and stratiform precipitation in the GPM operational algorithm by a factor of 2 while preserving the correlation with reference precipitation rates, and is insensitive to surface type variability. Based on comparisons against currently used convective schemes, it is concluded that the neural network approach has the potential to address regime-specific PMW satellite precipitation biases affecting GPM operations.

Full access
Akhil Sanjay Potdar
,
Pierre-Emmanuel Kirstetter
,
Devon Woods
, and
Manabendra Saharia

Abstract

In the hydrological sciences, the outstanding challenge of regional modeling requires to capture common and event-specific hydrologic behaviors driven by rainfall spatial variability and catchment physiography during floods. The overall objective of this study is to develop robust understanding and predictive capability of how rainfall spatial variability influences flood peak discharge relative to basin physiography. A machine-learning approach is used on a high-resolution dataset of rainfall and flooding events spanning 10 years, with rainfall events and basins of widely varying characteristics selected across the continental United States. It overcomes major limitations in prior studies that were based on limited observations or hydrological model simulations. This study explores first-order dependencies in the relationships between peak discharge, rainfall variability, and basin physiography, and it sheds light on these complex interactions using a multidimensional statistical modeling approach. Among different machine-learning techniques, XGBoost is used to determine the significant physiographical and rainfall characteristics that influence peak discharge through variable importance analysis. A parsimonious model with low bias and variance is created that can be deployed in the future for flash flood forecasting. The results confirm that, although the spatial organization of rainfall within a basin has a major influence on basin response, basin physiography is the primary driver of peak discharge. These findings have unprecedented spatial and temporal representativeness in terms of flood characterization across basins. An improved understanding of subbasin scale rainfall spatial variability will aid in robust flash flood characterization as well as with identifying basins that could most benefit from distributed hydrologic modeling.

Full access
Yagmur Derin
,
Pierre-Emmanuel Kirstetter
, and
Jonathan J. Gourley

Abstract

As a fundamental water flux, quantitative understanding of precipitation is important to understand and manage water systems under a changing climate, especially in transition regions such as the coastal interface between land and ocean. This work aims to assess the uncertainty in precipitation detection over the land–coast–ocean continuum in the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) V06B product. It is examined over three coastal regions of the United States—the West Coast, the Gulf of Mexico, and the East Coast, all of which are characterized by different topographies and precipitation climatologies. Detection capabilities are contrasted over different surfaces (land, coast, and ocean). A novel and integrated approach traces the IMERG detection performance back to its components (passive microwave, infrared, and morphing-based estimates). The analysis is performed by using high-resolution, high-quality Ground Validation Multi-Radar/Multi-Sensor (GV-MRMS) rainfall estimates as ground reference. The best detection performances are reported with PMW estimates (hit rates in the range [25%–39%]), followed by morphing ([20%–34%]), morphing+IR ([17%–27%]) and IR ([11%–16%]) estimates. Precipitation formation mechanisms play an important role, especially in the West Coast where orographic processes challenge detection. Further, precipitation typology is shown to be a strong driver of IMERG detection. Over the ocean, IMERG detection is generally better but suffers from false alarms ([10%–53%]). Overall, IMERG displays nonhomogeneous precipitation detection capabilities tracing back to its components. Results point toward a similar behavior across various land–coast–ocean continuum regions of the CONUS, which suggests that results can be potentially transferred to other coastal regions of the world.

Full access
Nobuyuki Utsumi
,
F. Joseph Turk
,
Ziad S. Haddad
,
Pierre-Emmanuel Kirstetter
, and
Hyungjun Kim

Abstract

Precipitation estimation based on passive microwave (MW) observations from low-Earth-orbiting satellites is one of the essential variables for understanding the global climate. However, almost all validation studies for such precipitation estimation have focused only on the surface precipitation rate. This study investigates the vertical precipitation profiles estimated by two passive MW-based retrieval algorithms, i.e., the emissivity principal components (EPC) algorithm and the Goddard profiling algorithm (GPROF). The passive MW-based condensed water content profiles estimated from the Global Precipitation Measurement Microwave Imager (GMI) are validated using the GMI + Dual-Frequency Precipitation Radar combined algorithm as the reference product. It is shown that the EPC generally underestimates the magnitude of the condensed water content profiles, described by the mean condensed water content, by about 20%–50% in the middle-to-high latitudes, while GPROF overestimates it by about 20%–50% in the middle-to-high latitudes and more than 50% in the tropics. Part of the EPC magnitude biases is associated with the representation of the precipitation type (i.e., convective and stratiform) in the retrieval algorithm. This suggests that a separate technique for precipitation type identification would aid in mitigating these biases. In contrast to the magnitude of the profile, the profile shapes are relatively well represented by these two passive MW-based retrievals. The joint analysis between the estimation performances of the vertical profiles and surface precipitation rate shows that the physically reasonable connections between the surface precipitation rate and the associated vertical profiles are achieved to some extent by the passive MW-based algorithms.

Open access
Shruti A. Upadhyaya
,
Pierre-Emmanuel Kirstetter
,
Jonathan J. Gourley
, and
Robert J. Kuligowski

ABSTRACT

The launch of NOAA’s latest generation of geostationary satellites known as the Geostationary Operational Environmental Satellite (GOES)-R Series has opened new opportunities in quantifying precipitation rates. Recent efforts have strived to utilize these data to improve space-based precipitation retrievals. The overall objective of the present work is to carry out a detailed error budget analysis of the improved Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) algorithm for GOES-R and the passive microwave (MW) combined (MWCOMB) precipitation dataset used to calibrate it with an aim to provide insights regarding strengths and weaknesses of these products. This study systematically analyzes the errors across different climate regions and also as a function of different precipitation types over the conterminous United States. The reference precipitation dataset is Ground-Validation Multi-Radar Multi-Sensor (GV-MRMS). Overall, MWCOMB reveals smaller errors as compared to SCaMPR. However, the analysis indicated that that the major portion of error in SCaMPR is propagated from the MWCOMB calibration data. The major challenge starts with poor detection from MWCOMB, which propagates in SCaMPR. In particular, MWCOMB misses 90% of cool stratiform precipitation and the overall detection score is around 40%. The ability of the algorithms to quantify precipitation amounts for the Warm Stratiform, Cool Stratiform, and Tropical/Stratiform Mix categories is poor compared to the Convective and Tropical/Convective Mix categories with additional challenges in complex terrain regions. Further analysis showed strong similarities in systematic and random error models with both products. This suggests that the potential of high-resolution GOES-R observations remains underutilized in SCaMPR due to the errors from the calibrator MWCOMB.

Free access
Clement Guilloteau
,
Efi Foufoula-Georgiou
,
Pierre Kirstetter
,
Jackson Tan
, and
George J. Huffman

Abstract

As more global satellite-derived precipitation products become available, it is imperative to evaluate them more carefully for providing guidance as to how well precipitation space–time features are captured for use in hydrologic modeling, climate studies, and other applications. Here we propose a space–time Fourier spectral analysis and define a suite of metrics that evaluate the spatial organization of storm systems, the propagation speed and direction of precipitation features, and the space–time scales at which a satellite product reproduces the variability of a reference “ground-truth” product (“effective resolution”). We demonstrate how the methodology relates to our physical intuition using the case study of a storm system with rich space–time structure. We then evaluate five high-resolution multisatellite products (CMORPH, GSMaP, IMERG-Early, IMERG-Final, and PERSIANN-CCS) over a period of 2 years over the southeastern United States. All five satellite products show generally consistent space–time power spectral density when compared to a reference ground gauge–radar dataset (GV-MRMS), revealing agreement in terms of average morphology and dynamics of precipitation systems. However, a deficit of spectral power at wavelengths shorter than 200 km and periods shorter than 4 h reveals that all satellite products are excessively “smooth.” The products also show low levels of spectral coherence with the gauge–radar reference at these fine scales, revealing discrepancies in capturing the location and timing of precipitation features. From the space–time spectral coherence, the IMERG-Final product shows superior ability in resolving the space–time dynamics of precipitation down to 200-km and 4-h scales compared to the other products.

Open access
Clement Guilloteau
,
Efi Foufoula-Georgiou
,
Pierre Kirstetter
,
Jackson Tan
, and
George J. Huffman

Abstract

Satellite precipitation products, as all quantitative estimates, come with some inherent degree of uncertainty. To associate a quantitative value of the uncertainty to each individual estimate, error modeling is necessary. Most of the error models proposed so far compute the uncertainty as a function of precipitation intensity only, and only at one specific spatiotemporal scale. We propose a spectral error model that accounts for the neighboring space–time dynamics of precipitation into the uncertainty quantification. Systematic distortions of the precipitation signal and random errors are characterized distinctively in every frequency–wavenumber band in the Fourier domain, to accurately characterize error across scales. The systematic distortions are represented as a deterministic space–time linear filtering term. The random errors are represented as a nonstationary additive noise. The spectral error model is applied to the IMERG multisatellite precipitation product, and its parameters are estimated empirically through a system identification approach using the GV-MRMS gauge–radar measurements as reference (“truth”) over the eastern United States. The filtering term is found to be essentially low-pass (attenuating the fine-scale variability). While traditional error models attribute most of the error variance to random errors, it is found here that the systematic filtering term explains 48% of the error variance at the native resolution of IMERG. This fact confirms that, at high resolution, filtering effects in satellite precipitation products cannot be ignored, and that the error cannot be represented as a purely random additive or multiplicative term. An important consequence is that precipitation estimates derived from different sources shall not be expected to automatically have statistically independent errors.

Significance Statement

Satellite precipitation products are nowadays widely used for climate and environmental research, water management, risk analysis, and decision support at the local, regional, and global scales. For all these applications, knowledge about the accuracy of the products is critical for their usability. However, products are not systematically provided with a quantitative measure of the uncertainty associated with each individual estimate. Various parametric error models have been proposed for uncertainty quantification, mostly assuming that the uncertainty is only a function of the precipitation intensity at the pixel and time of interest. By projecting satellite precipitation fields and their retrieval errors into the Fourier frequency–wavenumber domain, we show that we can explicitly take into account the neighboring space–time multiscale dynamics of precipitation and compute a scale-dependent uncertainty.

Open access
Yagmur Derin
,
Pierre-Emmanuel Kirstetter
,
Noah Brauer
,
Jonathan J. Gourley
, and
Jianxin Wang

Abstract

To understand and manage water systems under a changing climate and meet an increasing demand for water, a quantitative understanding of precipitation is most important in coastal regions. The capabilities of the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) V06B product for precipitation quantification are examined over three coastal regions of the United States: the West Coast, the Gulf of Mexico, and the East Coast, all of which are characterized by different topographies and precipitation climatologies. A novel uncertainty analysis of IMERG is proposed that considers environmental and physical parameters such as elevation and distance to the coastline. The IMERG performance is traced back to its components, i.e., passive microwave (PMW), infrared (IR), and morphing-based estimates. The analysis is performed using high-resolution, high-quality Ground Validation Multi-Radar/Multi-Sensor (GV-MRMS) rainfall estimates as ground reference at the native resolution of IMERG of 30 min and 0.1°. IMERG Final (IM-F) quantification performance heavily depends on the respective contribution of PMW, IR, and morph components. IM-F and its components overestimate the contribution of light rainfall (<1 mm h−1) and underestimate the contribution of high rainfall rates (>10 mm h−1) to the total rainfall volume. Strong regional dependencies are highlighted, especially over the West Coast, where the proximity of complex terrain to the coastline challenges precipitation estimates. Other major drivers are the distance from the coastline, elevation, and precipitation types, especially over the land and coast surface types, that highlight the impact of precipitation regimes.

Free access
Lisa Milani
,
Mark S. Kulie
,
Daniele Casella
,
Pierre E. Kirstetter
,
Giulia Panegrossi
,
Veljko Petkovic
,
Sarah E. Ringerud
,
Jean-François Rysman
,
Paolo Sanò
,
Nai-Yu Wang
,
Yalei You
, and
Gail Skofronick-Jackson

Abstract

This study focuses on the ability of the Global Precipitation Measurement (GPM) passive microwave sensors to detect and provide quantitative precipitation estimates (QPE) for extreme lake-effect snowfall events over the U.S. lower Great Lakes region. GPM Microwave Imager (GMI) high-frequency channels can clearly detect intense shallow convective snowfall events. However, GMI Goddard Profiling (GPROF) QPE retrievals produce inconsistent results when compared with the Multi-Radar Multi-Sensor (MRMS) ground-based radar reference dataset. While GPROF retrievals adequately capture intense snowfall rates and spatial patterns of one event, GPROF systematically underestimates intense snowfall rates in another event. Furthermore, GPROF produces abundant light snowfall rates that do not accord with MRMS observations. Ad hoc precipitation-rate thresholds are suggested to partially mitigate GPROF’s overproduction of light snowfall rates. The sensitivity and retrieval efficiency of GPROF to key parameters (2-m temperature, total precipitable water, and background surface type) used to constrain the GPROF a priori retrieval database are investigated. Results demonstrate that typical lake-effect snow environmental and surface conditions, especially coastal surfaces, are underpopulated in the database and adversely affect GPROF retrievals. For the two presented case studies, using a snow-cover a priori database in the locations originally deemed as coastline improves retrieval. This study suggests that it is particularly important to have more accurate GPROF surface classifications and better representativeness of the a priori databases to improve intense lake-effect snow detection and retrieval performance.

Full access
Efi Foufoula-Georgiou
,
Clement Guilloteau
,
Phu Nguyen
,
Amir Aghakouchak
,
Kuo-Lin Hsu
,
Antonio Busalacchi
,
F. Joseph Turk
,
Christa Peters-Lidard
,
Taikan Oki
,
Qingyun Duan
,
Witold Krajewski
,
Remko Uijlenhoet
,
Ana Barros
,
Pierre Kirstetter
,
William Logan
,
Terri Hogue
,
Hoshin Gupta
, and
Vincenzo Levizzani
Free access