Search Results

You are looking at 1 - 10 of 26 items for :

  • Author or Editor: Pierre Kirstetter x
  • Journal of Hydrometeorology x
  • Refine by Access: All Content x
Clear All Modify Search
Mark Smalley
,
Pierre-Emmanuel Kirstetter
, and
Tristan L’Ecuyer

Abstract

High temporal and spatial resolution observations of precipitation occurrence from the NEXRAD-based Multi-Radar Multi-Sensor (MRMS) system are compared to matched observations from CloudSat for 3 years over the contiguous United States (CONUS). Across the CONUS, precipitation is generally reported more frequently by CloudSat (7.8%) than by MRMS (6.3%), with dependence on factors such as the NEXRAD beam height, the near-surface air temperature, and the surface elevation. There is general agreement between ground-based and satellite-derived precipitation events over flat surfaces, especially in widespread precipitation events and when the NEXRAD beam heights are low. Within 100 km of the nearest NEXRAD site, MRMS reports a precipitation frequency of 7.54% while CloudSat reports 7.38%. However, further inspection reveals offsetting biases between the products, where CloudSat reports more snow and MRMS reports more rain. The magnitudes of these discrepancies correlate with elevation, but they are observed in both the complex terrain of the Rocky Mountains and the relatively flat midwestern areas of the CONUS. The findings advocate for caution when using MRMS frequency and accumulations in complex terrain, when temperatures are below freezing, and at ranges greater than 100 km. A multiresolution analysis shows that no more than 1.88% of CloudSat pixels over flat terrain are incorrectly identified as nonprecipitating as a result of shallow showers residing the CloudSat clutter-filled blind zone when near-surface air temperatures are above 15°C.

Full access
Jackson Tan
,
Nayeong Cho
,
Lazaros Oreopoulos
, and
Pierre Kirstetter

Abstract

Precipitation retrievals from passive microwave satellite observations form the basis of many widely used precipitation products, but the performance of the retrievals depends on numerous factors such as surface type and precipitation variability. Previous evaluation efforts have identified bias dependence on precipitation regime, which may reflect the influence on retrievals of recurring factors. In this study, the concept of a regime-based evaluation of precipitation from the Goddard profiling (GPROF) algorithm is extended to cloud regimes. Specifically, GPROF V05 precipitation retrievals under four different cloud regimes are evaluated against ground radars over the United States. GPROF is generally able to accurately retrieve the precipitation associated with both organized convection and less organized storms, which collectively produce a substantial fraction of global precipitation. However, precipitation from stratocumulus systems is underestimated over land and overestimated over water. Similarly, precipitation associated with trade cumulus environments is underestimated over land, while biases over water depend on the sensor’s channel configuration. By extending the evaluation to more sensors and suppressed environments, these results complement insights previously obtained from precipitation regimes, thus demonstrating the potential of cloud regimes in categorizing the global atmosphere into discrete systems.

Significance Statement

To understand how the accuracy of satellite precipitation depends on weather conditions, we compare the satellite estimates of precipitation against ground radars in the United States, using cloud regimes as a proxy for different recurring atmospheric systems. Consistent with previous studies, we found that errors in the satellite precipitation vary under different regimes. Satellite precipitation is, reassuringly, more accurate for storm systems that produce intense precipitation. However, in systems that produce weak or isolated precipitation, the errors are larger due to retrieval limitations. These findings highlight the important role of atmospheric states on the accuracy of satellite precipitation and the potential of cloud regimes for categorizing the global atmosphere.

Full access
Jackson Tan
,
Walter A. Petersen
,
Pierre-Emmanuel Kirstetter
, and
Yudong Tian

Abstract

The Integrated Multisatellite Retrievals for GPM (IMERG), a global high-resolution gridded precipitation dataset, will enable a wide range of applications, ranging from studies on precipitation characteristics to applications in hydrology to evaluation of weather and climate models. These applications focus on different spatial and temporal scales and thus average the precipitation estimates to coarser resolutions. Such a modification of scale will impact the reliability of IMERG. In this study, the performance of the Final Run of IMERG is evaluated against ground-based measurements as a function of increasing spatial resolution (from 0.1° to 2.5°) and accumulation periods (from 0.5 to 24 h) over a region in the southeastern United States. For ground reference, a product derived from the Multi-Radar/Multi-Sensor suite, a radar- and gauge-based operational precipitation dataset, is used. The TRMM Multisatellite Precipitation Analysis (TMPA) is also included as a benchmark. In general, both IMERG and TMPA improve when scaled up to larger areas and longer time periods, with better identification of rain occurrences and consistent improvements in systematic and random errors of rain rates. Between the two satellite estimates, IMERG is slightly better than TMPA most of the time. These results will inform users on the reliability of IMERG over the scales relevant to their studies.

Full access
Heather M. Grams
,
Pierre-Emmanuel Kirstetter
, and
Jonathan J. Gourley

Abstract

Satellite-based precipitation estimates are a vital resource for hydrologic applications in data-sparse regions of the world, particularly at daily or longer time scales. With the launch of a new generation of high-resolution imagers on geostationary platforms such as the Geostationary Operational Environmental Satellite series R (GOES-R), an opportunity exists to advance the detection and estimation of flash-flood-scale precipitation events from space beyond what is currently available. Because visible and infrared sensors can only observe cloud-top properties, many visible- and infrared-band-based rainfall algorithms attempt to first classify clouds before deriving a rain rate. This study uses a 2-yr database of cloud-top properties from proxy Advanced Baseline Imager radiances from GOES-R matched to surface precipitation types from the Multi-Radar Multi-Sensor (MRMS) system to develop a naïve Bayesian precipitation type classifier for the four major types of precipitation in MRMS: stratiform, convective, tropical, and hail. Evaluation of the naïve Bayesian precipitation type product showed a bias toward classifying convective and stratiform at the expense of tropical and hail. The tropical and hail classes in MRMS are derived based on the vertical structure and magnitude of radar reflectivity, which may not translate to an obvious signal at cloud top for a satellite-based algorithm. However, the satellite-based product correctly classified the hail areas as being convective in nature for the vast majority of missed hail events.

Full access
Akhil Sanjay Potdar
,
Pierre-Emmanuel Kirstetter
,
Devon Woods
, and
Manabendra Saharia

Abstract

In the hydrological sciences, the outstanding challenge of regional modeling requires to capture common and event-specific hydrologic behaviors driven by rainfall spatial variability and catchment physiography during floods. The overall objective of this study is to develop robust understanding and predictive capability of how rainfall spatial variability influences flood peak discharge relative to basin physiography. A machine-learning approach is used on a high-resolution dataset of rainfall and flooding events spanning 10 years, with rainfall events and basins of widely varying characteristics selected across the continental United States. It overcomes major limitations in prior studies that were based on limited observations or hydrological model simulations. This study explores first-order dependencies in the relationships between peak discharge, rainfall variability, and basin physiography, and it sheds light on these complex interactions using a multidimensional statistical modeling approach. Among different machine-learning techniques, XGBoost is used to determine the significant physiographical and rainfall characteristics that influence peak discharge through variable importance analysis. A parsimonious model with low bias and variance is created that can be deployed in the future for flash flood forecasting. The results confirm that, although the spatial organization of rainfall within a basin has a major influence on basin response, basin physiography is the primary driver of peak discharge. These findings have unprecedented spatial and temporal representativeness in terms of flood characterization across basins. An improved understanding of subbasin scale rainfall spatial variability will aid in robust flash flood characterization as well as with identifying basins that could most benefit from distributed hydrologic modeling.

Full access
Yagmur Derin
,
Pierre-Emmanuel Kirstetter
, and
Jonathan J. Gourley

Abstract

As a fundamental water flux, quantitative understanding of precipitation is important to understand and manage water systems under a changing climate, especially in transition regions such as the coastal interface between land and ocean. This work aims to assess the uncertainty in precipitation detection over the land–coast–ocean continuum in the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) V06B product. It is examined over three coastal regions of the United States—the West Coast, the Gulf of Mexico, and the East Coast, all of which are characterized by different topographies and precipitation climatologies. Detection capabilities are contrasted over different surfaces (land, coast, and ocean). A novel and integrated approach traces the IMERG detection performance back to its components (passive microwave, infrared, and morphing-based estimates). The analysis is performed by using high-resolution, high-quality Ground Validation Multi-Radar/Multi-Sensor (GV-MRMS) rainfall estimates as ground reference. The best detection performances are reported with PMW estimates (hit rates in the range [25%–39%]), followed by morphing ([20%–34%]), morphing+IR ([17%–27%]) and IR ([11%–16%]) estimates. Precipitation formation mechanisms play an important role, especially in the West Coast where orographic processes challenge detection. Further, precipitation typology is shown to be a strong driver of IMERG detection. Over the ocean, IMERG detection is generally better but suffers from false alarms ([10%–53%]). Overall, IMERG displays nonhomogeneous precipitation detection capabilities tracing back to its components. Results point toward a similar behavior across various land–coast–ocean continuum regions of the CONUS, which suggests that results can be potentially transferred to other coastal regions of the world.

Full access
Noah S. Brauer
,
Jeffrey B. Basara
,
Cameron R. Homeyer
,
Greg M. McFarquhar
, and
Pierre E. Kirstetter

Abstract

Hurricane Harvey produced unprecedented widespread rainfall amounts over 1000 mm in portions of southeast Texas, including Houston, from 26 to 31 August 2017. The highly efficient and prolonged warm rain processes associated with Harvey played a key role in the catastrophic flooding that occurred throughout the region. Precipitation efficiency (PE) is widely referred to in the scientific literature when discussing excessive precipitation events that lead to catastrophic flash flooding, but has yet to be explored or quantified in tropical cyclones coincident with polarimetric radar observations. With the introduction of dual-polarization radar to the NEXRAD WSR-88D network, polarimetric radar variables such as Z H , Z DR, and K DP can be used to gain insight into the precipitation processes that contribute to enhanced PE. It was found that 6-h mean values of Z H between 35 and 45 dBZ, Z DR between 1 and 1.5 dB, and K DP greater than 1° km−1 were collocated with the regions of PE greater than 100% between 27 and 29 August. Additionally, supercell thunderstorms embedded in the outer bands of Harvey were identified via 3–6 km Multi-Radar Multi-Senor (MRMS) rotation tracks and were collocated with swaths of enhanced positive Z H , Z DR, and K DP. A polarimetric rainfall relationship estimates that 1-h mean rainfall rates in these supercells were as high as 85 mm h−1 and made a significant contribution to the excessive precipitation event that occurred over the region.

Free access
Manabendra Saharia
,
Pierre-Emmanuel Kirstetter
,
Humberto Vergara
,
Jonathan J. Gourley
,
Yang Hong
, and
Marine Giroud

Abstract

Flash floods, a subset of floods, are a particularly damaging natural hazard worldwide because of their multidisciplinary nature, difficulty in forecasting, and fast onset that limits emergency responses. In this study, a new variable called “flashiness” is introduced as a measure of flood severity. This work utilizes a representative and long archive of flooding events spanning 78 years to map flash flood severity, as quantified by the flashiness variable. Flood severity is then modeled as a function of a large number of geomorphological and climatological variables, which is then used to extend and regionalize the flashiness variable from gauged basins to a high-resolution grid covering the conterminous United States. Six flash flood “hotspots” are identified and additional analysis is presented on the seasonality of flash flooding. The findings from this study are then compared to other related datasets in the United States, including National Weather Service storm reports and a historical flood fatalities database.

Full access
Zeinab Takbiri
,
Ardeshir Ebtehaj
,
Efi Foufoula-Georgiou
,
Pierre-Emmanuel Kirstetter
, and
F. Joseph Turk

Abstract

Monitoring changes of precipitation phase from space is important for understanding the mass balance of Earth’s cryosphere in a changing climate. This paper examines a Bayesian nearest neighbor approach for prognostic detection of precipitation and its phase using passive microwave observations from the Global Precipitation Measurement (GPM) satellite. The method uses the weighted Euclidean distance metric to search through an a priori database populated with coincident GPM radiometer and radar observations as well as ancillary snow-cover data. The algorithm performance is evaluated using data from GPM official precipitation products, ground-based radars, and high-fidelity simulations from the Weather Research and Forecasting Model. Using the presented approach, we demonstrate that the hit probability of terrestrial precipitation detection can reach to 0.80, while the probability of false alarm remains below 0.11. The algorithm demonstrates higher skill in detecting snowfall than rainfall, on average by 10%. In particular, the probability of precipitation detection and its solid phase increases by 11% and 8%, over dry snow cover, when compared to other surface types. The main reason is found to be related to the ability of the algorithm in capturing the signal of increased liquid water content in snowy clouds over radiometrically cold snow-covered surfaces.

Full access
Yixin Wen
,
Pierre Kirstetter
,
J. J. Gourley
,
Yang Hong
,
Ali Behrangi
, and
Zachary Flamig

Abstract

Snow is important to water resources and is of critical importance to society. Ground-weather-radar-based snowfall observations have been highly desirable for large-scale weather monitoring and water resources applications. This study conducts an evaluation of the Multi-Radar Multi-Sensor (MRMS) quantitative estimates of snow rate using the Snowpack Telemetry (SNOTEL) daily snow water equivalent (SWE) datasets. A detectability evaluation shows that MRMS is limited in detecting very light snow (daily snow accumulation <5 mm) because of the quality control module in MRMS filtering out weak signals (<5 dBZ). For daily snow accumulation greater than 10 mm, MRMS has good detectability. The quantitative comparisons reveal a bias of −77.37% between MRMS and SNOTEL. A majority of the underestimation bias occurs in relatively warm conditions with surface temperatures ranging from −10° to 0°C. A constant reflectivity–SWE intensity relationship does not capture the snow mass flux increase associated with denser snow particles at these relatively warm temperatures. There is no clear dependence of the bias on radar beam height. The findings in this study indicate that further improvement in radar snowfall products might occur by deriving appropriate reflectivity–SWE relationships considering the degree of riming and snowflake size.

Full access