Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Piotr J. Flatau x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Maria Flatau
,
Piotr J. Flatau
,
Patricia Phoebus
, and
Pearn P. Niiler

Abstract

Existing theories of the Madden–Julian oscillation neglect the feedback between the modification of sea surface temperature by the convection and development of a convective cluster itself. The authors show that the convection-generated SST gradient plays an important role in cluster propagation and development. The relative importance of radiative and evaporative fluxes in SST regulation is also discussed. Various Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment and Central Equatorial Pacific Experiment observation platforms are used to estimate the effects of equatorial convection on SST changes during March 1993. The data include drifting buoys and TAO-buoy array measurements, combined with the Navy Operational Global Atmospheric Prediction System analyzed surface wind fields and Geostationary Meteorological Satellite cloud-top temperatures. It is shown that during the equatorial convection episode SST is decreasing under and to the west of the convective heat source due to the large wind velocities and solar flux reduction. To the east of the source, in the convergence region of a Kelvin wave, low wind speeds and high insolation cause the SST to increase.

The data are used to formulate an empirical relationship between wind speed and the 24-h SST change on the equator. Although formulated in terms of wind speed, this relationship implicitly includes radiative effects. This equation is then used in a global circulation model to examine the effect of SST feedback on the behavior of equatorial convection. A series of experiments is performed using an R15 general circulation model of the “aquaplanet” with a zonally symmetric SST distribution. In the case with fixed SSTs, equatorial wind fluctuations have the character of waves propagating around the globe with a phase speed of about 20 m s−1. When the effect of SST modification is included, the fluctuations slow down and become more organized. In addition, a 40–60-day peak appears in the spectral analysis of equatorial precipitation.

Full access
Johannes Verlinde
,
Piotr J. Flatau
, and
William R. Cotton

Abstract

A closed form solution for the collection growth equation as used in bulk microphysical parameterizations is derived. Although the general form is mathematically complex, it can serve as a benchmark for testing a variety of approximations. Two special cases that can immediately be implemented in existing cloud models are also presented. This solution is used to evaluate two commonly used approximations. The effect of the selection of different basis functions is also investigated.

Full access
Jerome M. Schmidt
,
Piotr J. Flatau
, and
Robert D. Yates

Abstract

Very-high-resolution Doppler radar observations are used together with aircraft measurements to document the dynamic and thermodynamic structure of a dissipating altocumulus cloud system associated with a deep virga layer. The cloud layer circulation is shown to consist of shallow vertical velocity couplets near cloud top and a series of subkilometer-scale Rayleigh–Bénard-like cells that extend vertically through the depth of the cloud layer. The subcloud layer was observed to contain a number of narrow virga fall streaks that developed below the more dominant Rayleigh–Bénard updraft circulations in the cloud layer. These features were discovered to be associated with kilometer-scale horizontally orientated rotor circulations that formed along the lateral flanks of the streaks collocated downdraft circulation. The Doppler analysis further reveals that a layer mean descent was present throughout both the cloud and subcloud layers. This characteristic of the circulation is analyzed with regard to the diabatic and radiative forcing on horizontal length scales ranging from the Rayleigh–Bénard circulations to the overall cloud layer width. In particular, linear analytical results indicate that a deep and broad mesoscale region of subsidence is quickly established in middle-level cloud layers of finite width when a layer-wide horizontal gradient in the cloud-top radiative cooling rate is present. A conceptual model summarizing the primary observed and inferred circulation features of the altocumulus layer is presented.

Full access
Jerome M. Schmidt
,
Piotr J. Flatau
, and
Paul R. Harasti

Abstract

The structure of a melting layer associated with a mesoconvective system is examined using a combination of in situ aircraft measurements and a unique Doppler radar operated by the U.S. Navy that has a range resolution as fine as 0.5 m. Interest in this case was motivated by ground-based all-sky camera images that captured the transient development of midlevel billow cloud structures within a precipitating trailing stratiform cloud shield associated with a passing deep convective system. A sequence of high-fidelity time–height radar measurements taken of this storm system reveal that the movement of the billow cloud structure over the radar site corresponded with abrupt transitions in the observed low-level precipitation structure. Of particular note is an observed transition from stratiform to more periodic and vertically slanted rain shaft structures that both radar and aircraft measurements indicate have the same temporal periodicity determined to arise visually between successive billow cloud bands. Doppler, balloon, and aircraft measurements reveal these transient bands are associated with a shallow circulation field that resides just above the melting level in a layer of moist neutral stability and strong negative vertical wind shear. The nature of these circulations and their impact on the evolving precipitation field are described in the context of known nimbostratus cloud types.

Open access
Graeme L. Stephens
,
Si-Chee Tsay
,
Paul W. Stackhouse Jr.
, and
Piotr J. Flatau

Abstract

This paper examines the effects of the relationship between cirrus cloud ice water content and cloud temperature on climate change. A simple mechanistic climate model is used to study the feedback between ice water content and temperature. The central question studied in this paper concerns the extent to which both the radiative and microphysical properties of cirrus cloud influence such a feedback. To address this question, a parameterization of the albedo and emissivity of clouds is introduced. Observations that relate the ice water content to cloud temperature are incorporated in the parameterization to introduce a temperature dependence to both albedo and emittance. The cloud properties relevant to the cloud feedback are expressed as functions of particles size re , asymmetry parameter g and cloud temperature and analyses of aircraft measurements, lidar and ground based radiometer data are used to select re and g. It was shown that scattering calculations assuming spherical particles with a distribution described by re = 16 μm reasonably matched the lidar and radiometer data. However, comparison of cloud radiation properties measured from aircraft to those parameterized in this study required values of g significantly smaller than those derived for spheres but consistent with our understanding of nonspherical particle scattering.

The climate simulations revealed that the influence of cirrus cloud on climate was strongly affected by the choice of re and g: parameters that are both poorly known for cirrus. It was further shown that the effect of ice water feedback on a CO2 warming simulation could be either positive or negative depending on the value of re assumed. Based on these results, it was concluded that prediction of cirrus cloud feedback on climate is both premature and limited by our lack of understanding of the relationship between size and shape of ice crystals and the gross radiative properties of cirrus.

Full access