Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Po-Hsiung Lin x
- Bulletin of the American Meteorological Society x
- Refine by Access: All Content x
The South China Sea Monsoon Experiment (SCSMEX) is an international field experiment with the objective to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China aiming at improving monsoon predictions. In this article, a description of the major meteorological observation platforms during the intensive observing periods of SCSMEX is presented. In addition, highlights of early results and discussions of the role of SCSMEX in providing valuable in situ data for calibration of satellite rainfall estimates from the Tropical Rainfall Measuring Mission are provided. Preliminary results indicate that there are distinctive stages in the onset of the South China Sea monsoon including possibly strong influences from extratropical systems as well as from convection over the Indian Ocean and the Bay of Bengal. There is some tantalizing evidence of complex interactions between the supercloud cluster development over the Indian Ocean, advancing southwest monsoon flow over the South China Sea, midlatitude disturbances, and the western Pacific subtropical high, possibly contributing to the disastrous flood of the Yangtze River Basin in China during June 1998.
The South China Sea Monsoon Experiment (SCSMEX) is an international field experiment with the objective to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China aiming at improving monsoon predictions. In this article, a description of the major meteorological observation platforms during the intensive observing periods of SCSMEX is presented. In addition, highlights of early results and discussions of the role of SCSMEX in providing valuable in situ data for calibration of satellite rainfall estimates from the Tropical Rainfall Measuring Mission are provided. Preliminary results indicate that there are distinctive stages in the onset of the South China Sea monsoon including possibly strong influences from extratropical systems as well as from convection over the Indian Ocean and the Bay of Bengal. There is some tantalizing evidence of complex interactions between the supercloud cluster development over the Indian Ocean, advancing southwest monsoon flow over the South China Sea, midlatitude disturbances, and the western Pacific subtropical high, possibly contributing to the disastrous flood of the Yangtze River Basin in China during June 1998.
Constellations of driftsonde systems— gondolas floating in the stratosphere and able to release dropsondes upon command— have so far been used in three major field experiments from 2006 through 2010. With them, high-quality, high-resolution, in situ atmospheric profiles were made over extended periods in regions that are otherwise very difficult to observe. The measurements have unique value for verifying and evaluating numerical weather prediction models and global data assimilation systems; they can be a valuable resource to validate data from remote sensing instruments, especially on satellites, but also airborne or ground-based remote sensors. These applications for models and remote sensors result in a powerful combination for improving data assimilation systems. Driftsondes also can support process studies in otherwise difficult locations—for example, to study factors that control the development or decay of a tropical disturbance, or to investigate the lower boundary layer over the interior Antarctic continent. The driftsonde system is now a mature and robust observing system that can be combined with flight-level data to conduct multidisciplinary research at heights well above that reached by current research aircraft. In this article we describe the development and capabilities of the driftsonde system, the exemplary science resulting from its use to date, and some future applications.
Constellations of driftsonde systems— gondolas floating in the stratosphere and able to release dropsondes upon command— have so far been used in three major field experiments from 2006 through 2010. With them, high-quality, high-resolution, in situ atmospheric profiles were made over extended periods in regions that are otherwise very difficult to observe. The measurements have unique value for verifying and evaluating numerical weather prediction models and global data assimilation systems; they can be a valuable resource to validate data from remote sensing instruments, especially on satellites, but also airborne or ground-based remote sensors. These applications for models and remote sensors result in a powerful combination for improving data assimilation systems. Driftsondes also can support process studies in otherwise difficult locations—for example, to study factors that control the development or decay of a tropical disturbance, or to investigate the lower boundary layer over the interior Antarctic continent. The driftsonde system is now a mature and robust observing system that can be combined with flight-level data to conduct multidisciplinary research at heights well above that reached by current research aircraft. In this article we describe the development and capabilities of the driftsonde system, the exemplary science resulting from its use to date, and some future applications.