Search Results
You are looking at 1 - 5 of 5 items for :
- Author or Editor: Prashant D. Sardeshmukh x
- Monthly Weather Review x
- Refine by Access: All Content x
Abstract
Extending atmospheric prediction skill beyond the predictability limit of about 10 days for daily weather rests on the hope that some time-averaged aspects of anomalous circulations remain predictable at longer forecast lead times, both because of the existence of natural low-frequency modes of atmospheric variability and coupling to the ocean with larger thermal inertia. In this paper the week-2 and week-3 forecast skill of two global coupled atmosphere–ocean models recently developed at NASA and NOAA is compared with that of much simpler linear inverse models (LIMs) based on the observed time-lag correlations of atmospheric circulation anomalies in the Northern Hemisphere and outgoing longwave radiation (OLR) anomalies in the tropics. The coupled models are found to beat the LIMs only slightly, and only if an ensemble prediction methodology is employed. To assess the potential for further skill improvement, a predictability analysis based on the relative magnitudes of forecast signal and forecast noise in the LIM framework is conducted. Estimating potential skill by such a method is argued to be superior to using the ensemble-mean and ensemble-spread information in the coupled model ensemble prediction system. The LIM-based predictability analysis yields relatively conservative estimates of the potential skill, and suggests that outside the tropics the average coupled model skill may already be close to the potential skill, although there may still be room for improvement in the tropical forecast skill.
Abstract
Extending atmospheric prediction skill beyond the predictability limit of about 10 days for daily weather rests on the hope that some time-averaged aspects of anomalous circulations remain predictable at longer forecast lead times, both because of the existence of natural low-frequency modes of atmospheric variability and coupling to the ocean with larger thermal inertia. In this paper the week-2 and week-3 forecast skill of two global coupled atmosphere–ocean models recently developed at NASA and NOAA is compared with that of much simpler linear inverse models (LIMs) based on the observed time-lag correlations of atmospheric circulation anomalies in the Northern Hemisphere and outgoing longwave radiation (OLR) anomalies in the tropics. The coupled models are found to beat the LIMs only slightly, and only if an ensemble prediction methodology is employed. To assess the potential for further skill improvement, a predictability analysis based on the relative magnitudes of forecast signal and forecast noise in the LIM framework is conducted. Estimating potential skill by such a method is argued to be superior to using the ensemble-mean and ensemble-spread information in the coupled model ensemble prediction system. The LIM-based predictability analysis yields relatively conservative estimates of the potential skill, and suggests that outside the tropics the average coupled model skill may already be close to the potential skill, although there may still be room for improvement in the tropical forecast skill.
Abstract
The equivalence of taking an isotropic, moving, spatial average of a two-dimensional field on the sphere to multiplying the coefficients in its spherical harmonics representation with factors that depend only on the total wavenumber n is discussed. Equivalent spatial averaging operators for several such spectral filters are displayed.
Abstract
The equivalence of taking an isotropic, moving, spatial average of a two-dimensional field on the sphere to multiplying the coefficients in its spherical harmonics representation with factors that depend only on the total wavenumber n is discussed. Equivalent spatial averaging operators for several such spectral filters are displayed.
Abstract
The predictability of weekly averaged circulation anomalies in the Northern Hemisphere, and diabatic heating anomalies in the Tropics, is investigated in a linear inverse model (LIM) derived from their observed simultaneous and time-lag correlation statistics. In both winter and summer, the model's forecast skill at week 2 (days 8–14) and week 3 (days 15–21) is comparable to that of a comprehensive global medium-range forecast (MRF) model developed at the National Centers for Environmental Prediction (NCEP). Its skill at week 3 is actually higher on average, partly due to its better ability to forecast tropical heating variations and their influence on the extratropical circulation. The geographical and temporal variations of forecast skill are also similar in the two models. This makes the much simpler LIM an attractive tool for assessing and diagnosing atmospheric predictability at these forecast ranges.
The LIM assumes that the dynamics of weekly averages are linear, asymptotically stable, and stochastically forced. In a forecasting context, the predictable signal is associated with the deterministic linear dynamics, and the forecast error with the unpredictable stochastic noise. In a low-order linear model of a high-order chaotic system, this stochastic noise represents the effects of both chaotic nonlinear interactions and unresolved initial components on the evolution of the resolved components. Its statistics are assumed here to be state independent.
An average signal-to-noise ratio is estimated at each grid point on the hemisphere and is then used to estimate the potential predictability of weekly variations at the point. In general, this predictability is about 50% higher in winter than summer over the Pacific and North America sectors; the situation is reversed over Eurasia and North Africa. Skill in predicting tropical heating variations is important for realizing this potential skill. The actual LIM forecast skill has a similar geographical structure but weaker magnitude than the potential skill.
In this framework, the predictable variations of forecast skill from case to case are associated with predictable variations of signal rather than of noise. This contrasts with the traditional emphasis in studies of shorter-term predictability on flow-dependent instabilities, that is, on the predictable variations of noise. In the LIM, the predictable variations of signal are associated with variations of the initial state projection on the growing singular vectors of the LIM's propagator, which have relatively large amplitude in the Tropics. At times of strong projection on such structures, the signal-to-noise ratio is relatively high, and the Northern Hemispheric circulation is not only potentially but also actually more predictable than at other times.
Abstract
The predictability of weekly averaged circulation anomalies in the Northern Hemisphere, and diabatic heating anomalies in the Tropics, is investigated in a linear inverse model (LIM) derived from their observed simultaneous and time-lag correlation statistics. In both winter and summer, the model's forecast skill at week 2 (days 8–14) and week 3 (days 15–21) is comparable to that of a comprehensive global medium-range forecast (MRF) model developed at the National Centers for Environmental Prediction (NCEP). Its skill at week 3 is actually higher on average, partly due to its better ability to forecast tropical heating variations and their influence on the extratropical circulation. The geographical and temporal variations of forecast skill are also similar in the two models. This makes the much simpler LIM an attractive tool for assessing and diagnosing atmospheric predictability at these forecast ranges.
The LIM assumes that the dynamics of weekly averages are linear, asymptotically stable, and stochastically forced. In a forecasting context, the predictable signal is associated with the deterministic linear dynamics, and the forecast error with the unpredictable stochastic noise. In a low-order linear model of a high-order chaotic system, this stochastic noise represents the effects of both chaotic nonlinear interactions and unresolved initial components on the evolution of the resolved components. Its statistics are assumed here to be state independent.
An average signal-to-noise ratio is estimated at each grid point on the hemisphere and is then used to estimate the potential predictability of weekly variations at the point. In general, this predictability is about 50% higher in winter than summer over the Pacific and North America sectors; the situation is reversed over Eurasia and North Africa. Skill in predicting tropical heating variations is important for realizing this potential skill. The actual LIM forecast skill has a similar geographical structure but weaker magnitude than the potential skill.
In this framework, the predictable variations of forecast skill from case to case are associated with predictable variations of signal rather than of noise. This contrasts with the traditional emphasis in studies of shorter-term predictability on flow-dependent instabilities, that is, on the predictable variations of noise. In the LIM, the predictable variations of signal are associated with variations of the initial state projection on the growing singular vectors of the LIM's propagator, which have relatively large amplitude in the Tropics. At times of strong projection on such structures, the signal-to-noise ratio is relatively high, and the Northern Hemispheric circulation is not only potentially but also actually more predictable than at other times.
Abstract
Given the network of satellite and aircraft observations around the globe, do additional in situ observations impact analyses within a global forecast system? Despite the dense observational network at many levels in the tropical troposphere, assimilating additional sounding observations taken in the eastern tropical Pacific Ocean during the 2016 El Niño Rapid Response (ENRR) locally improves wind, temperature, and humidity 6-h forecasts using a modern assimilation system. Fields from a 50-km reanalysis that assimilates all available observations, including those taken during the ENRR, are compared with those from an otherwise-identical reanalysis that denies all ENRR observations. These observations reveal a bias in the 200-hPa divergence of the assimilating model during a strong El Niño. While the existing observational network partially corrects this bias, the ENRR observations provide a stronger mean correction in the analysis. Significant improvements in the mean-square fit of the first-guess fields to the assimilated ENRR observations demonstrate that they are valuable within the existing network. The effects of the ENRR observations are pronounced in levels of the troposphere that are sparsely observed, particularly 500–800 hPa. Assimilating ENRR observations has mixed effects on the mean-square difference with nearby non-ENRR observations. Using a similar system but with a higher-resolution forecast model yields comparable results to the lower-resolution system. These findings imply a limited improvement in large-scale forecast variability from additional in situ observations, but significant improvements in local 6-h forecasts.
Abstract
Given the network of satellite and aircraft observations around the globe, do additional in situ observations impact analyses within a global forecast system? Despite the dense observational network at many levels in the tropical troposphere, assimilating additional sounding observations taken in the eastern tropical Pacific Ocean during the 2016 El Niño Rapid Response (ENRR) locally improves wind, temperature, and humidity 6-h forecasts using a modern assimilation system. Fields from a 50-km reanalysis that assimilates all available observations, including those taken during the ENRR, are compared with those from an otherwise-identical reanalysis that denies all ENRR observations. These observations reveal a bias in the 200-hPa divergence of the assimilating model during a strong El Niño. While the existing observational network partially corrects this bias, the ENRR observations provide a stronger mean correction in the analysis. Significant improvements in the mean-square fit of the first-guess fields to the assimilated ENRR observations demonstrate that they are valuable within the existing network. The effects of the ENRR observations are pronounced in levels of the troposphere that are sparsely observed, particularly 500–800 hPa. Assimilating ENRR observations has mixed effects on the mean-square difference with nearby non-ENRR observations. Using a similar system but with a higher-resolution forecast model yields comparable results to the lower-resolution system. These findings imply a limited improvement in large-scale forecast variability from additional in situ observations, but significant improvements in local 6-h forecasts.
Abstract
An important issue in developing a forecast system is its sensitivity to additional observations for improving initial conditions, to the data assimilation (DA) method used, and to improvements in the forecast model. These sensitivities are investigated here for the Global Forecast System (GFS) of the National Centers for Environmental Prediction (NCEP). Four parallel sets of 7-day ensemble forecasts were generated for 100 forecast cases in mid-January to mid-March 2016. The sets differed in their 1) inclusion or exclusion of additional observations collected over the eastern Pacific during the El Niño Rapid Response (ENRR) field campaign, 2) use of a hybrid 4D–EnVar versus a pure EnKF DA method to prepare the initial conditions, and 3) inclusion or exclusion of stochastic parameterizations in the forecast model. The Control forecast set used the ENRR observations, hybrid DA, and stochastic parameterizations. Errors of the ensemble-mean forecasts in this Control set were compared with those in the other sets, with emphasis on the upper-tropospheric geopotential heights and vorticity, midtropospheric vertical velocity, column-integrated precipitable water, near-surface air temperature, and surface precipitation. In general, the forecast errors were found to be only slightly sensitive to the additional ENRR observations, more sensitive to the DA methods, and most sensitive to the inclusion of stochastic parameterizations in the model, which reduced errors globally in all the variables considered except geopotential heights in the tropical upper troposphere. The reduction in precipitation errors, determined with respect to two independent observational datasets, was particularly striking.
Abstract
An important issue in developing a forecast system is its sensitivity to additional observations for improving initial conditions, to the data assimilation (DA) method used, and to improvements in the forecast model. These sensitivities are investigated here for the Global Forecast System (GFS) of the National Centers for Environmental Prediction (NCEP). Four parallel sets of 7-day ensemble forecasts were generated for 100 forecast cases in mid-January to mid-March 2016. The sets differed in their 1) inclusion or exclusion of additional observations collected over the eastern Pacific during the El Niño Rapid Response (ENRR) field campaign, 2) use of a hybrid 4D–EnVar versus a pure EnKF DA method to prepare the initial conditions, and 3) inclusion or exclusion of stochastic parameterizations in the forecast model. The Control forecast set used the ENRR observations, hybrid DA, and stochastic parameterizations. Errors of the ensemble-mean forecasts in this Control set were compared with those in the other sets, with emphasis on the upper-tropospheric geopotential heights and vorticity, midtropospheric vertical velocity, column-integrated precipitable water, near-surface air temperature, and surface precipitation. In general, the forecast errors were found to be only slightly sensitive to the additional ENRR observations, more sensitive to the DA methods, and most sensitive to the inclusion of stochastic parameterizations in the model, which reduced errors globally in all the variables considered except geopotential heights in the tropical upper troposphere. The reduction in precipitation errors, determined with respect to two independent observational datasets, was particularly striking.