Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Qing Wang x
- Journal of Physical Oceanography x
- Refine by Access: All Content x
Abstract
Extensive studies have addressed the characteristics and mechanisms of open-ocean polynyas in the Weddell and Cosmonaut Seas. Here, we show that more persistent open-ocean polynyas occur in the Cooperation Sea (CS) (60°–90°E), a sector of the Southern Ocean off the Prydz Bay continental shelf, between 2002 and 2019. Polynyas are formed annually mainly within the 62°–65°S band, as identified by sea ice concentrations less than 0.7. The polynyas usually began to emerge in April and expanded to large sizes during July–October, with sizes often larger than those of the Maud Rise polynya in 2017. The annual maximum size of polynyas ranged from 115.3 × 103 km2 in 2013 to 312.4 × 103 km2 in 2010, with an average value of 188.9 × 103 km2. The Antarctic Circumpolar Current (ACC) travels closer to the continental shelf and brings the upper circumpolar deep water to much higher latitudes in the CS than in most other sectors; cyclonic ocean circulations often develop between the ACC and the Antarctic Slope Current, with many of them being associated with local topographic features and dense water cascading. These oceanic preconditions, along with cyclonic wind forcing in the Antarctic Divergence zone, generated polynyas in the CS. These findings offer a more complete circumpolar view of open-ocean polynyas in the Southern Ocean and have implications for physical, biological, and biogeochemical studies of the Southern Ocean. Future efforts should be particularly devoted to more extensively observing the ocean circulation to understand the variability of open-ocean polynyas in the CS.
Significance Statement
An open-ocean polynya is an offshore area of open water or low sea ice cover surrounded by pack ice. Open-ocean polynyas are important for driving the physical, biogeochemical, and biological processes in the Southern Ocean. Extensive studies have addressed the characteristics and mechanisms of open-ocean polynyas in the Weddell and Cosmonaut Seas. The purpose of this study is to document the existence of more persistent open-ocean polynyas in the Cooperation Sea (60°–90°E) and explore the atmospheric and oceanic forcing mechanisms responsible for the formation of the open-ocean polynyas. Our results would offer a more complete circumpolar view of open-ocean polynyas in the Southern Ocean and have implications for physical, biological, and biogeochemical studies of the Southern Ocean.
Abstract
Extensive studies have addressed the characteristics and mechanisms of open-ocean polynyas in the Weddell and Cosmonaut Seas. Here, we show that more persistent open-ocean polynyas occur in the Cooperation Sea (CS) (60°–90°E), a sector of the Southern Ocean off the Prydz Bay continental shelf, between 2002 and 2019. Polynyas are formed annually mainly within the 62°–65°S band, as identified by sea ice concentrations less than 0.7. The polynyas usually began to emerge in April and expanded to large sizes during July–October, with sizes often larger than those of the Maud Rise polynya in 2017. The annual maximum size of polynyas ranged from 115.3 × 103 km2 in 2013 to 312.4 × 103 km2 in 2010, with an average value of 188.9 × 103 km2. The Antarctic Circumpolar Current (ACC) travels closer to the continental shelf and brings the upper circumpolar deep water to much higher latitudes in the CS than in most other sectors; cyclonic ocean circulations often develop between the ACC and the Antarctic Slope Current, with many of them being associated with local topographic features and dense water cascading. These oceanic preconditions, along with cyclonic wind forcing in the Antarctic Divergence zone, generated polynyas in the CS. These findings offer a more complete circumpolar view of open-ocean polynyas in the Southern Ocean and have implications for physical, biological, and biogeochemical studies of the Southern Ocean. Future efforts should be particularly devoted to more extensively observing the ocean circulation to understand the variability of open-ocean polynyas in the CS.
Significance Statement
An open-ocean polynya is an offshore area of open water or low sea ice cover surrounded by pack ice. Open-ocean polynyas are important for driving the physical, biogeochemical, and biological processes in the Southern Ocean. Extensive studies have addressed the characteristics and mechanisms of open-ocean polynyas in the Weddell and Cosmonaut Seas. The purpose of this study is to document the existence of more persistent open-ocean polynyas in the Cooperation Sea (60°–90°E) and explore the atmospheric and oceanic forcing mechanisms responsible for the formation of the open-ocean polynyas. Our results would offer a more complete circumpolar view of open-ocean polynyas in the Southern Ocean and have implications for physical, biological, and biogeochemical studies of the Southern Ocean.
Abstract
Observations from TRITON buoys in the warm/fresh pool and a global ocean general circulation model are used to study the interannual variability of the equatorial western Pacific and the relationship between the zonal warm water transport, meridional convergence, and the warm water volume (WWV). The simulated temperature, salinity, and zonal warm water transport are validated with the mooring observations for the period 2000–14. The model results are then used to examine the WWV balance in ENSO cycles in an extended period from 1980 to 2014. It is shown that the zonal transport is highly correlated with meridional convergence and leads by about 4–5 months, and their phase offset determines the WWV changes. This result differs from the recharge paradigm in which the meridional convergence is supposed to be mainly responsible for the WWV changes. There is also no apparent change in relationship between zonal and meridional transports since 2000, unlike that between WWV and SST. The study suggests that the zonal warm water transport from the western boundary could have major implications for ENSO dynamics.
Abstract
Observations from TRITON buoys in the warm/fresh pool and a global ocean general circulation model are used to study the interannual variability of the equatorial western Pacific and the relationship between the zonal warm water transport, meridional convergence, and the warm water volume (WWV). The simulated temperature, salinity, and zonal warm water transport are validated with the mooring observations for the period 2000–14. The model results are then used to examine the WWV balance in ENSO cycles in an extended period from 1980 to 2014. It is shown that the zonal transport is highly correlated with meridional convergence and leads by about 4–5 months, and their phase offset determines the WWV changes. This result differs from the recharge paradigm in which the meridional convergence is supposed to be mainly responsible for the WWV changes. There is also no apparent change in relationship between zonal and meridional transports since 2000, unlike that between WWV and SST. The study suggests that the zonal warm water transport from the western boundary could have major implications for ENSO dynamics.