Search Results
You are looking at 1 - 8 of 8 items for :
- Author or Editor: Qingfang Jiang x
- Terrain-Induced Rotor Experiment (T-Rex) x
- Refine by Access: All Content x
Abstract
The impact of diurnal forcing on a downslope wind event that occurred in Owens Valley in California during the Sierra Rotors Project (SRP) in the spring of 2004 has been examined based on observational analysis and diagnosis of numerical simulations. The observations indicate that while the upstream flow was characterized by persistent westerlies at and above the mountaintop level the cross-valley winds in Owens Valley exhibited strong diurnal variation. The numerical simulations using the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) capture many of the observed salient features and indicate that the in-valley flow evolved among three states during a diurnal cycle. Before sunrise, moderate downslope winds were confined to the western slope of Owens Valley (shallow penetration state). Surface heating after sunrise weakened the downslope winds and mountain waves and eventually led to the decoupling of the well-mixed valley air from the westerlies aloft around local noon (decoupled state). The westerlies plunged into the valley in the afternoon and propagated across the valley floor (in-valley westerly state). After sunset, the westerlies within the valley retreated toward the western slope, where the downslope winds persisted throughout the night.
Abstract
The impact of diurnal forcing on a downslope wind event that occurred in Owens Valley in California during the Sierra Rotors Project (SRP) in the spring of 2004 has been examined based on observational analysis and diagnosis of numerical simulations. The observations indicate that while the upstream flow was characterized by persistent westerlies at and above the mountaintop level the cross-valley winds in Owens Valley exhibited strong diurnal variation. The numerical simulations using the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) capture many of the observed salient features and indicate that the in-valley flow evolved among three states during a diurnal cycle. Before sunrise, moderate downslope winds were confined to the western slope of Owens Valley (shallow penetration state). Surface heating after sunrise weakened the downslope winds and mountain waves and eventually led to the decoupling of the well-mixed valley air from the westerlies aloft around local noon (decoupled state). The westerlies plunged into the valley in the afternoon and propagated across the valley floor (in-valley westerly state). After sunset, the westerlies within the valley retreated toward the western slope, where the downslope winds persisted throughout the night.
Abstract
The impact of moist processes on mountain waves over Sierra Nevada Mountain Range is investigated in this study. Aircraft measurements over Owens Valley obtained during the Terrain-induced Rotor Experiment (T-REX) indicate that mountain waves were generally weaker when the relative humidity maximum near the mountaintop level was above 70%. Four moist cases with a RH maximum near the mountaintop level greater than 90% have been further examined using a mesoscale model and a linear wave model. Two competing mechanisms governing the influence of moisture on mountain waves have been identified. The first mechanism involves low-level moisture that enhances flow–terrain interaction by reducing windward flow blocking. In the second mechanism, the moist airflow tends to damp mountain waves through destratifying the airflow and reducing the buoyancy frequency. The second mechanism dominates in the presence of a deep moist layer in the lower to middle troposphere, and the wave amplitude is significantly reduced associated with a smaller moist buoyancy frequency. With a shallow moist layer and strong low-level flow, the two mechanisms can become comparable in magnitude and largely offset each other.
Abstract
The impact of moist processes on mountain waves over Sierra Nevada Mountain Range is investigated in this study. Aircraft measurements over Owens Valley obtained during the Terrain-induced Rotor Experiment (T-REX) indicate that mountain waves were generally weaker when the relative humidity maximum near the mountaintop level was above 70%. Four moist cases with a RH maximum near the mountaintop level greater than 90% have been further examined using a mesoscale model and a linear wave model. Two competing mechanisms governing the influence of moisture on mountain waves have been identified. The first mechanism involves low-level moisture that enhances flow–terrain interaction by reducing windward flow blocking. In the second mechanism, the moist airflow tends to damp mountain waves through destratifying the airflow and reducing the buoyancy frequency. The second mechanism dominates in the presence of a deep moist layer in the lower to middle troposphere, and the wave amplitude is significantly reduced associated with a smaller moist buoyancy frequency. With a shallow moist layer and strong low-level flow, the two mechanisms can become comparable in magnitude and largely offset each other.
Abstract
Fine dust particles emitted from Owens (dry) Lake in California documented during the Terrain-Induced Rotor Experiment (T-REX) of 2006 have been examined using surface observations and a mesoscale aerosol model. Air quality stations around Owens (dry) Lake observed dramatic temporal and spatial variations of surface winds and dust particulate concentration. The hourly particulate concentration averaged over a 2-month period exhibits a strong diurnal variation with a primary maximum in the afternoon, coincident with a wind speed maximum. The strongest dust event documented during the 2-month-long period, with maximum hourly and daily average particulate concentrations of 7000 and 1000 μg m−3, respectively, is further examined using output from a high-resolution mesoscale aerosol model simulation. In the morning, with the valley air decoupled from the prevailing westerlies (i.e., cross valley) above the mountaintop, fine particulates are blown off the dry lake bed by moderate up-valley winds and transported along the valley toward northwest. The simulated strong westerlies reach the western part of the valley in the afternoon and more fine dust is scoured off Owens (dry) Lake than in the morning. Assisted by strong turbulence and wave-induced vertical motion in the valley, the westerlies can transport a substantial fraction of the particulate mass across the Inyo Mountains into Death Valley National Park.
Abstract
Fine dust particles emitted from Owens (dry) Lake in California documented during the Terrain-Induced Rotor Experiment (T-REX) of 2006 have been examined using surface observations and a mesoscale aerosol model. Air quality stations around Owens (dry) Lake observed dramatic temporal and spatial variations of surface winds and dust particulate concentration. The hourly particulate concentration averaged over a 2-month period exhibits a strong diurnal variation with a primary maximum in the afternoon, coincident with a wind speed maximum. The strongest dust event documented during the 2-month-long period, with maximum hourly and daily average particulate concentrations of 7000 and 1000 μg m−3, respectively, is further examined using output from a high-resolution mesoscale aerosol model simulation. In the morning, with the valley air decoupled from the prevailing westerlies (i.e., cross valley) above the mountaintop, fine particulates are blown off the dry lake bed by moderate up-valley winds and transported along the valley toward northwest. The simulated strong westerlies reach the western part of the valley in the afternoon and more fine dust is scoured off Owens (dry) Lake than in the morning. Assisted by strong turbulence and wave-induced vertical motion in the valley, the westerlies can transport a substantial fraction of the particulate mass across the Inyo Mountains into Death Valley National Park.
Abstract
Measurements from the National Science Foundation/National Center for Atmospheric Research (NSF/NCAR) Gulfstream V (G-V) obtained during the recent Terrain-Induced Rotor Experiment (T-REX) indicate marked differences in the character of the wave response between repeated flight tracks across the Sierra Nevada, which were separated by a distance of approximately 50 km. Observations from several of the G-V research flights indicate that the vertical velocities in the primary wave exhibited variations up to a factor of 2 between the southern and northern portions of the racetrack flight segments in the lower stratosphere, with the largest amplitude waves most often occurring over the southern flight leg, which has a terrain maximum that is 800 m lower than the northern leg. Multiple racetracks at 11.7- and 13.1-km altitudes indicate that these differences were repeatable, which is suggestive that the deviations were likely due to vertically propagating mountain waves that varied systematically in amplitude rather than associated with transients. The cross-mountain horizontal velocity perturbations are also a maximum above the southern portion of the Sierra Nevada ridge.
Real data and idealized nonhydrostatic numerical model simulations are used to test the hypothesis that the observed variability in the wave amplitude and characteristics in the along-barrier direction is a consequence of blocking by the three-dimensional Sierra Nevada and the Coriolis effect. The numerical simulation results suggest that wave launching is sensitive to the overall three-dimensional characteristics of the Sierra Nevada barrier, which has an important impact on the wave amplitude and characteristics in the lower stratosphere. Real-time high-resolution Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) forecasts successfully capture the along-barrier variations in the wave amplitude (using vertical velocity as a proxy) as well as skillfully distinguishing between large- and small-amplitude stratospheric wave events during T-REX.
Abstract
Measurements from the National Science Foundation/National Center for Atmospheric Research (NSF/NCAR) Gulfstream V (G-V) obtained during the recent Terrain-Induced Rotor Experiment (T-REX) indicate marked differences in the character of the wave response between repeated flight tracks across the Sierra Nevada, which were separated by a distance of approximately 50 km. Observations from several of the G-V research flights indicate that the vertical velocities in the primary wave exhibited variations up to a factor of 2 between the southern and northern portions of the racetrack flight segments in the lower stratosphere, with the largest amplitude waves most often occurring over the southern flight leg, which has a terrain maximum that is 800 m lower than the northern leg. Multiple racetracks at 11.7- and 13.1-km altitudes indicate that these differences were repeatable, which is suggestive that the deviations were likely due to vertically propagating mountain waves that varied systematically in amplitude rather than associated with transients. The cross-mountain horizontal velocity perturbations are also a maximum above the southern portion of the Sierra Nevada ridge.
Real data and idealized nonhydrostatic numerical model simulations are used to test the hypothesis that the observed variability in the wave amplitude and characteristics in the along-barrier direction is a consequence of blocking by the three-dimensional Sierra Nevada and the Coriolis effect. The numerical simulation results suggest that wave launching is sensitive to the overall three-dimensional characteristics of the Sierra Nevada barrier, which has an important impact on the wave amplitude and characteristics in the lower stratosphere. Real-time high-resolution Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) forecasts successfully capture the along-barrier variations in the wave amplitude (using vertical velocity as a proxy) as well as skillfully distinguishing between large- and small-amplitude stratospheric wave events during T-REX.
Abstract
Characteristics of turbulence in the lower and middle troposphere over Owens Valley have been examined using aircraft in situ measurements obtained from the Terrain-Induced Rotor Experiment. The two events analyzed in this study are characterized by a deep turbulent layer from the valley floor up to the midtroposphere associated with the interaction between trapped waves and an elevated shear layer. Kelvin–Helmholtz (KH) instability develops above the mountaintop level and often along the wave crests where the Richardson number is reduced. The turbulence induced by KH instability is characterized by a progressive downscale energy cascade, a well-defined inertial subrange up to 1 km, and large eddies with vertical to horizontal aspect ratios less than unity. The turbulence below the mountaintop level is largely shear induced, associated with wave steepening and breaking, and is more isotropic. Evaluation of structure functions indicates that while the turbulence energy cascade is predominately downscale, upscale energy transfer exists with horizontal scales from a few hundred meters to a few kilometers because of the transient energy dispersion of large eddies generated by KH instability and gravity wave steepening or breaking.
Abstract
Characteristics of turbulence in the lower and middle troposphere over Owens Valley have been examined using aircraft in situ measurements obtained from the Terrain-Induced Rotor Experiment. The two events analyzed in this study are characterized by a deep turbulent layer from the valley floor up to the midtroposphere associated with the interaction between trapped waves and an elevated shear layer. Kelvin–Helmholtz (KH) instability develops above the mountaintop level and often along the wave crests where the Richardson number is reduced. The turbulence induced by KH instability is characterized by a progressive downscale energy cascade, a well-defined inertial subrange up to 1 km, and large eddies with vertical to horizontal aspect ratios less than unity. The turbulence below the mountaintop level is largely shear induced, associated with wave steepening and breaking, and is more isotropic. Evaluation of structure functions indicates that while the turbulence energy cascade is predominately downscale, upscale energy transfer exists with horizontal scales from a few hundred meters to a few kilometers because of the transient energy dispersion of large eddies generated by KH instability and gravity wave steepening or breaking.
Abstract
Using the National Science Foundation (NSF)–NCAR Gulfstream V and the NSF–Wyoming King Air research aircraft during the Terrain-Induced Rotor Experiment (T-REX) in March–April 2006, six cases of Sierra Nevada mountain waves were surveyed with 126 cross-mountain legs. The goal was to identify the influence of the tropopause on waves entering the stratosphere. During each flight leg, part of the variation in observed parameters was due to parameter layering, heaving up and down in the waves. Diagnosis of the combined wave-layering signal was aided with innovative use of new GPS altitude measurements. The ozone and water vapor layering correlated with layered Bernoulli function and cross-flow speed.
GPS-corrected static pressure was used to compute the vertical energy flux, confirming, for the first time, the Eliassen–Palm relation between momentum and energy flux (EF = −U · MF). Kinetic (KE) and potential (PE) wave energy densities were also computed. The equipartition ratio (EQR = PE/KE) changed abruptly across the tropopause, indicating partial wave reflection. In one case (16 April 2006) systematically reversed momentum and energy fluxes were found in the stratosphere above 12 km. On a “wave property diagram,” three families of waves were identified: up- and downgoing long waves (30 km) and shorter (14 km) trapped waves. For the latter two types, an explanation is proposed related to secondary generation near the tropopause and reflection or secondary generation in the lower stratosphere.
Abstract
Using the National Science Foundation (NSF)–NCAR Gulfstream V and the NSF–Wyoming King Air research aircraft during the Terrain-Induced Rotor Experiment (T-REX) in March–April 2006, six cases of Sierra Nevada mountain waves were surveyed with 126 cross-mountain legs. The goal was to identify the influence of the tropopause on waves entering the stratosphere. During each flight leg, part of the variation in observed parameters was due to parameter layering, heaving up and down in the waves. Diagnosis of the combined wave-layering signal was aided with innovative use of new GPS altitude measurements. The ozone and water vapor layering correlated with layered Bernoulli function and cross-flow speed.
GPS-corrected static pressure was used to compute the vertical energy flux, confirming, for the first time, the Eliassen–Palm relation between momentum and energy flux (EF = −U · MF). Kinetic (KE) and potential (PE) wave energy densities were also computed. The equipartition ratio (EQR = PE/KE) changed abruptly across the tropopause, indicating partial wave reflection. In one case (16 April 2006) systematically reversed momentum and energy fluxes were found in the stratosphere above 12 km. On a “wave property diagram,” three families of waves were identified: up- and downgoing long waves (30 km) and shorter (14 km) trapped waves. For the latter two types, an explanation is proposed related to secondary generation near the tropopause and reflection or secondary generation in the lower stratosphere.
Abstract
High-resolution observations from scanning Doppler and aerosol lidars, wind profiler radars, as well as surface and aircraft measurements during the Terrain-induced Rotor Experiment (T-REX) provide the first comprehensive documentation of small-scale intense vortices associated with atmospheric rotors that form in the lee of mountainous terrain. Although rotors are already recognized as potential hazards for aircraft, it is proposed that these small-scale vortices, or subrotors, are the most dangerous features because of strong wind shear and the transient nature of the vortices. A life cycle of a subrotor event is captured by scanning Doppler and aerosol lidars over a 5-min period. The lidars depict an amplifying vortex, with a characteristic length scale of ∼500–1000 m, that overturns and intensifies to a maximum spanwise vorticity greater than 0.2 s−1. Radar wind profiler observations document a series of vortices, characterized by updraft/downdraft couplets and regions of enhanced reversed flow, that are generated in a layer of strong vertical wind shear and subcritical Richardson number. The observations and numerical simulations reveal that turbulent subrotors occur most frequently along the leading edge of an elevated sheet of horizontal vorticity that is a manifestation of boundary layer shear and separation along the lee slopes. As the subrotors break from the vortex sheet, intensification occurs through vortex stretching and in some cases tilting processes related to three-dimensional turbulent mixing. The subrotors and ambient vortex sheet are shown to intensify through a modest increase in the upstream inversion strength, which illustrates the predictability challenges for the turbulent characterization of rotors.
Abstract
High-resolution observations from scanning Doppler and aerosol lidars, wind profiler radars, as well as surface and aircraft measurements during the Terrain-induced Rotor Experiment (T-REX) provide the first comprehensive documentation of small-scale intense vortices associated with atmospheric rotors that form in the lee of mountainous terrain. Although rotors are already recognized as potential hazards for aircraft, it is proposed that these small-scale vortices, or subrotors, are the most dangerous features because of strong wind shear and the transient nature of the vortices. A life cycle of a subrotor event is captured by scanning Doppler and aerosol lidars over a 5-min period. The lidars depict an amplifying vortex, with a characteristic length scale of ∼500–1000 m, that overturns and intensifies to a maximum spanwise vorticity greater than 0.2 s−1. Radar wind profiler observations document a series of vortices, characterized by updraft/downdraft couplets and regions of enhanced reversed flow, that are generated in a layer of strong vertical wind shear and subcritical Richardson number. The observations and numerical simulations reveal that turbulent subrotors occur most frequently along the leading edge of an elevated sheet of horizontal vorticity that is a manifestation of boundary layer shear and separation along the lee slopes. As the subrotors break from the vortex sheet, intensification occurs through vortex stretching and in some cases tilting processes related to three-dimensional turbulent mixing. The subrotors and ambient vortex sheet are shown to intensify through a modest increase in the upstream inversion strength, which illustrates the predictability challenges for the turbulent characterization of rotors.
Abstract
Numerical simulations of flow over steep terrain using 11 different nonhydrostatic numerical models are compared and analyzed. A basic benchmark and five other test cases are simulated in a two-dimensional framework using the same initial state, which is based on conditions during Intensive Observation Period (IOP) 6 of the Terrain-Induced Rotor Experiment (T-REX), in which intense mountain-wave activity was observed. All of the models use an identical horizontal resolution of 1 km and the same vertical resolution. The six simulated test cases use various terrain heights: a 100-m bell-shaped hill, a 1000-m idealized ridge that is steeper on the lee slope, a 2500-m ridge with the same terrain shape, and a cross-Sierra terrain profile. The models are tested with both free-slip and no-slip lower boundary conditions.
The results indicate a surprisingly diverse spectrum of simulated mountain-wave characteristics including lee waves, hydraulic-like jump features, and gravity wave breaking. The vertical velocity standard deviation is twice as large in the free-slip experiments relative to the no-slip simulations. Nevertheless, the no-slip simulations also exhibit considerable variations in the wave characteristics. The results imply relatively low predictability of key characteristics of topographically forced flows such as the strength of downslope winds and stratospheric wave breaking. The vertical flux of horizontal momentum, which is a domain-integrated quantity, exhibits considerable spread among the models, particularly for the experiments with the 2500-m ridge and Sierra terrain. The differences among the various model simulations, all initialized with identical initial states, suggest that model dynamical cores may be an important component of diversity for the design of mesoscale ensemble systems for topographically forced flows. The intermodel differences are significantly larger than sensitivity experiments within a single modeling system.
Abstract
Numerical simulations of flow over steep terrain using 11 different nonhydrostatic numerical models are compared and analyzed. A basic benchmark and five other test cases are simulated in a two-dimensional framework using the same initial state, which is based on conditions during Intensive Observation Period (IOP) 6 of the Terrain-Induced Rotor Experiment (T-REX), in which intense mountain-wave activity was observed. All of the models use an identical horizontal resolution of 1 km and the same vertical resolution. The six simulated test cases use various terrain heights: a 100-m bell-shaped hill, a 1000-m idealized ridge that is steeper on the lee slope, a 2500-m ridge with the same terrain shape, and a cross-Sierra terrain profile. The models are tested with both free-slip and no-slip lower boundary conditions.
The results indicate a surprisingly diverse spectrum of simulated mountain-wave characteristics including lee waves, hydraulic-like jump features, and gravity wave breaking. The vertical velocity standard deviation is twice as large in the free-slip experiments relative to the no-slip simulations. Nevertheless, the no-slip simulations also exhibit considerable variations in the wave characteristics. The results imply relatively low predictability of key characteristics of topographically forced flows such as the strength of downslope winds and stratospheric wave breaking. The vertical flux of horizontal momentum, which is a domain-integrated quantity, exhibits considerable spread among the models, particularly for the experiments with the 2500-m ridge and Sierra terrain. The differences among the various model simulations, all initialized with identical initial states, suggest that model dynamical cores may be an important component of diversity for the design of mesoscale ensemble systems for topographically forced flows. The intermodel differences are significantly larger than sensitivity experiments within a single modeling system.