Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: R. A. Ferrare x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
D. D. Turner, W. F. Feltz, and R. A. Ferrare

The Atmospheric Radiation Measurement program's Southern Great Plains Cloud and Radiation Testbed site central facility near Lamont, Oklahoma, offers unique operational water vapor profiling capabilities, including active and passive remote sensors as well as traditional in situ radiosonde measurements. Remote sensing technologies include an automated Raman lidar and an automated Atmospheric Emitted Radiance Interferometer (AERI), which are able to retrieve water vapor profiles operationally through the lower troposphere throughout the diurnal cycle. Comparisons of these two water vapor remote sensing methods to each other and to radiosondes over an 8-month period are presented and discussed, highlighting the accuracy and limitations of each method. Additionally, the AERI is able to retrieve profiles of temperature while the Raman lidar is able to retrieve aerosol extinction profiles operationally. These data, coupled with hourly wind profiles from a 915-MHz wind profiler, provide complete specification of the state of the atmosphere in noncloudy skies. Several case studies illustrate the utility of these high temporal resolution measurements in the characterization of mesoscale features within a 3-day time period in which passage of a dryline, warm air advection, and cold front occurred.

Full access
Larry K. Berg, Carl M. Berkowitz, John A. Ogren, Chris A. Hostetler, Richard A. Ferrare, Manvendra K. Dubey, Elisabeth Andrews, Richard L. Coulter, Johnathan W. Hair, John M. Hubbe, Yin-Nan Lee, Claudio Mazzoleni, Jason Olfert, and Stephen R. Springston

The primary goal of the Cumulus Humilis Aerosol Processing Study (CHAPS) was to characterize and contrast freshly emitted aerosols below, within, and above fields of cumuli, and to study changes to the cloud microphysical structure within these same cloud fields in the vicinity of Oklahoma City during June 2007. CHAPS is one of few studies that have had an aerosol mass spectrometer (AMS) sampling downstream of a counterflow virtual impactor (CVI) inlet on an aircraft, allowing the examination of the chemical composition of activated aerosols within the cumuli. The results from CHAPS provide insights into changes in the aerosol chemical and optical properties as aerosols move through shallow cumuli downwind of a moderately sized city. Three instrument platforms were employed during CHAPS, including the U.S. Department of Energy Gulfstream-1 aircraft, which was equipped for in situ sampling of aerosol optical and chemical properties; the NASA Langley King Air B200, which carried the downward-looking NASA Langley High Spectral Resolution Lidar (HSRL) to measure profiles of aerosol backscatter, extinction, and depolarization between the King Air and the surface; and a surface site equipped for continuous in situ measurements of aerosol optical properties, profiles of aerosol backscatter, and meteorological conditions, including total sky cover and thermodynamic profiles of the atmosphere. In spite of record precipitation over central Oklahoma, a total of 8 research flights were made by the G-l and 18 by the B200, including special satellite verification flights timed to coincide with NASA satellite A-Train overpasses.

Full access
R. A. Peppler, C. P. Bahrmann, J. C. Barnard, J. R. Campbell, M.-D. Cheng, R. A. Ferrare, R. N. Halthore, L. A. HeiIman, D. L. Hlavka, N. S. Laulainen, C.-J. Lin, J. A. Ogren, M. R. Poellot, L. A. Remer, K. Sassen, J. D. Spinhirne, M. E. Splitt, and D. D. Turner

Drought-stricken areas of Central America and Mexico were victimized in 1998 by forest and brush fires that burned out of control during much of the first half of the year. Wind currents at various times during the episode helped transport smoke from these fires over the Gulf of Mexico and into portions of the United States. Visibilities were greatly reduced during favorable flow periods from New Mexico to south Florida and northward to Wisconsin as a result of this smoke and haze. In response to the reduced visibilities and increased pollutants, public health advisories and information statements were issued by various agencies in Gulf Coast states and in Oklahoma.

This event was also detected by a unique array of instrumentation deployed at the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program Southern Great Plains Cloud and Radiation Testbed and by sensors of the Oklahoma Department of Environmental Quality/Air Quality Division. Observations from these measurement devices suggest elevated levels of aerosol loading and ozone concentrations during May 1998 when prevailing winds were favorable for the transport of the Central American smoke pall into Oklahoma and Kansas. In particular, aerosol extinction profiles derived from the ARM Raman lidar measurements revealed large variations in the vertical distribution of the smoke.

Full access
Ralph A. Kahn, Tim A. Berkoff, Charles Brock, Gao Chen, Richard A. Ferrare, Steven Ghan, Thomas F. Hansico, Dean A. Hegg, J. Vanderlei Martins, Cameron S. McNaughton, Daniel M. Murphy, John A. Ogren, Joyce E. Penner, Peter Pilewskie, John H. Seinfeld, and Douglas R. Worsnop

Abstract

A modest operational program of systematic aircraft measurements can resolve key satellite aerosol data record limitations. Satellite observations provide frequent global aerosol amount maps but offer only loose aerosol property constraints needed for climate and air quality applications. We define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ. The flight program could characterize major aerosol airmass types statistically, at a level of detail unobtainable from space. It would 1) enhance satellite aerosol retrieval products with better climatology assumptions and 2) improve translation between satellite-retrieved optical properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space; improve aerosol constraints on climate modeling; help interrelate remote sensing, in situ, and modeling aerosol-type definitions; and contribute to future satellite aerosol missions. Fifteen required variables are identified and four payload options of increasing ambition are defined to constrain these quantities. “Option C” could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable, even if aerosol loading varies.

Open access
Bart Geerts, David Parsons, Conrad L. Ziegler, Tammy M. Weckwerth, Michael I. Biggerstaff, Richard D. Clark, Michael C. Coniglio, Belay B. Demoz, Richard A. Ferrare, William A. Gallus Jr., Kevin Haghi, John M. Hanesiak, Petra M. Klein, Kevin R. Knupp, Karen Kosiba, Greg M. McFarquhar, James A. Moore, Amin R. Nehrir, Matthew D. Parker, James O. Pinto, Robert M. Rauber, Russ S. Schumacher, David D. Turner, Qing Wang, Xuguang Wang, Zhien Wang, and Joshua Wurman

Abstract

The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night.

To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings.

Full access