Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: R. D. Hart x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
G. E. Klazura
,
D. R. Cook
,
R. L. Coulter
,
R. L. Hart
,
D. J. Holdridge
,
B. M. Lesht
,
J. D. Lucas
,
T. J. Martin
,
M. S. Pekour
, and
M. L. Wesely
Full access
J. C. Doran
,
F. J. Barnes
,
R. L. Coulter
,
T. L. Crawford
,
D. D. Baldocchi
,
L. Balick
,
D. R. Cook
,
D. Cooper
,
R. J. Dobosy
,
W. A. Dugas
,
L. Fritschen
,
R. L. Hart
,
L. Hipps
,
J. M. Hubbe
,
W. Gao
,
R. Hicks
,
R. R. Kirkham
,
K. E. Kunkel
,
T. J. Martin
,
T. P. Meyers
,
W. Porch
,
J. D. Shannon
,
W. J. Shaw
,
E. Swiatek
, and
C. D. Whiteman

A field campaign was carried out near Boardman, Oregon, to study the effects of subgrid-scale variability of sensible- and latent-heat fluxes on surface boundary-layer properties. The experiment involved three U.S. Department of Energy laboratories, one National Oceanic and Atmospheric Administration laboratory, and several universities. The experiment was conducted in a region of severe contrasts in adjacent surface types that accentuated the response of the atmosphere to variable surface forcing. Large values of sensible-heat flux and low values of latent-heat flux characterized a sagebrush steppe area; significantly smaller sensible-heat fluxes and much larger latent-heat fluxes were associated with extensive tracts of irrigated farmland to the north, east, and west of the steppe. Data were obtained from an array of surface flux stations, remote-sensing devices, an instrumented aircraft, and soil and vegetation measurements. The data will be used to address the problem of extrapolating from a limited number of local measurements to area-averaged values of fluxes suitable for use in global climate models.

Full access
Catherine A. Senior
,
John H. Marsham
,
Ségolène Berthou
,
Laura E. Burgin
,
Sonja S. Folwell
,
Elizabeth J. Kendon
,
Cornelia M. Klein
,
Richard G. Jones
,
Neha Mittal
,
David P. Rowell
,
Lorenzo Tomassini
,
Théo Vischel
,
Bernd Becker
,
Cathryn E. Birch
,
Julia Crook
,
Andrew J. Dougill
,
Declan L. Finney
,
Richard J. Graham
,
Neil C. G. Hart
,
Christopher D. Jack
,
Lawrence S. Jackson
,
Rachel James
,
Bettina Koelle
,
Herbert Misiani
,
Brenda Mwalukanga
,
Douglas J. Parker
,
Rachel A. Stratton
,
Christopher M. Taylor
,
Simon O. Tucker
,
Caroline M. Wainwright
,
Richard Washington
, and
Martin R. Willet

Abstract

Pan-Africa convection-permitting regional climate model simulations have been performed to study the impact of high resolution and the explicit representation of atmospheric moist convection on the present and future climate of Africa. These unique simulations have allowed European and African climate scientists to understand the critical role that the representation of convection plays in the ability of a contemporary climate model to capture climate and climate change, including many impact-relevant aspects such as rainfall variability and extremes. There are significant improvements in not only the small-scale characteristics of rainfall such as its intensity and diurnal cycle, but also in the large-scale circulation. Similarly, effects of explicit convection affect not only projected changes in rainfall extremes, dry spells, and high winds, but also continental-scale circulation and regional rainfall accumulations. The physics underlying such differences are in many cases expected to be relevant to all models that use parameterized convection. In some cases physical understanding of small-scale change means that we can provide regional decision-makers with new scales of information across a range of sectors. We demonstrate the potential value of these simulations both as scientific tools to increase climate process understanding and, when used with other models, for direct user applications. We describe how these ground-breaking simulations have been achieved under the U.K. Government’s Future Climate for Africa Programme. We anticipate a growing number of such simulations, which we advocate should become a routine component of climate projection, and encourage international coordination of such computationally and human-resource expensive simulations as effectively as possible.

Full access