Search Results

You are looking at 1 - 9 of 9 items for :

  • Author or Editor: R. D. Palmer x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: All Content x
Clear All Modify Search
B. L. Cheong
,
R. D. Palmer
, and
M. Xue

Abstract

A three-dimensional radar simulator capable of generating simulated raw time series data for a weather radar has been designed and implemented. The characteristics of the radar signals (amplitude, phase) are derived from the atmospheric fields from a high-resolution numerical weather model, although actual measured fields could be used. A field of thousands of scatterers is populated within the field of view of the virtual radar. Reflectivity characteristics of the targets are determined from well-known parameterization schemes. Doppler characteristics are derived by forcing the discrete scatterers to move with the three-dimensional wind field. Conventional moment-generating radar simulators use atmospheric conditions and a set of weighting functions to produce theoretical moment maps, which allow for the study of radar characteristics and limitations given particular configurations. In contrast to these radar simulators, the algorithm presented here is capable of producing sample-to-sample time series data that are collected by a radar system of virtually any design. Thus, this new radar simulator allows for the test and analysis of advanced topics, such as phased array antennas, clutter mitigation schemes, waveform design studies, and spectral-based methods. Limited examples exemplifying the usefulness and flexibility of the simulator will be provided.

Full access
Brian R. Corner
,
Robert D. Palmer
, and
Miguel F. Larsen

Abstract

A new, inexpensive radiosonde transmitter and receiver system has been developed for measuring wind field inhomogeneities in the planetary boundary layer using multiple simultaneously launched balloons. The radiosondes use a narrowband-frequency-modulated carrier signal to transmit atmospheric pressure and temperature information to a surface receiver. The pressure and temperature data transmitted by the radiosondes allow their height above the surface to be ascertained. In addition, the radiosondes can be tracked with a photographic camera system to provide the azimuth and elevation angles of the radiosondes during their ascent, so that their three-dimensional horizontal position can be determined. By tracking the spatial separation of the radiosondes over time, horizontal gradients can be derived. The system hardware and results from preliminary tests are described.

Full access
B. M. Isom
,
R. D. Palmer
,
G. S. Secrest
,
R. D. Rhoton
,
D. Saxion
,
T. L. Allmon
,
J. Reed
,
T. Crum
, and
R. Vogt

Abstract

The wind power industry has seen tremendous growth over the past decade and with it has come the need for clutter mitigation techniques for nearby radar systems. Wind turbines can impart upon these radars a unique type of interference that is not removed with conventional clutter-filtering methods. Time series data from Weather Surveillance Radar-1988 Doppler (WSR-88D) stations near wind farms were collected and spectral analysis was used to investigate the detailed characteristics of wind turbine clutter. Techniques to mask wind turbine clutter were developed that utilize multiquadric interpolation in two and three dimensions and can be applied to both the spectral moments and spectral components. In an effort to improve performance, a nowcasting algorithm was incorporated into the interpolation scheme via a least mean squares criterion. The masking techniques described in this paper will be shown to reduce the impact of wind turbine clutter on weather radar systems at the expense of spatial resolution.

Full access
R. D. Palmer
,
M. F. Larsen
,
C. J. Heinselman
, and
I. S. Mikkelsen

Abstract

First results from the implementation of frequency domain interferometry (FDI) using an L-band frequency of 1290 MHz are presented. To our knowledge, FDI has not previously been applied to such high-frequency measurements. The experiment was conducted in September 1991 using the radar facility located in Søndre Strømfjord, Greenland. The Søndre Strømfjord radar is typically used for incoherent scatter measurements in the ionosphere, but these are some of the first lower-atmospheric results, namely, 8.6–13.4 km, since the new data-taking system was implemented. At the time of the experiment, the steerability of the 32-m dish antenna was hampered because of a faulty elevation-scanning bearing. Therefore, the measurements were taken from an approximately vertical direction for the duration of the experiment. The spectra and the correlation functions obtained from the FDI data are compared to previous results at other frequencies. The data show the Søndre Strømfjord radar is providing reliable wind measurements in the lower atmosphere and that FDI can be implemented at L band.

Full access
Timothy A. Alberts
,
Phillip B. Chilson
,
B. L. Cheong
, and
R. D. Palmer

Abstract

Trends in current weather research involve active phased-array radar systems that have several advantages over conventional radars with klystron or magnetron transmitters. However, phased-array radars generally do not have the same peak transmit power capability as conventional systems so they must transmit longer pulses to maintain an equivalent average power on target. Increasing transmits pulse duration increases range gate size but the use of pulse compression offers a means of recovering the otherwise lost resolution. To evaluate pulse compression for use in future weather radar systems, modifications to a weather radar simulator have been made to incorporate phase-coding into its functionality. Data derived from Barker-coded pulses with matched and mismatched filters were compared with data obtained from uncoded pulses to evaluate the pulse compression performance. Additionally, pulse compression was simulated using data collected from an experimental radar to validate the simulated results. The data derived from both experimental and simulated methods were then applied to a fuzzy logic tornado detection algorithm to examine the effects of the pulse compression process. It was found that the fuzzy logic process was sufficiently robust to maintain high levels of detection accuracy with low false alarm rates even though biases were observed in the pulse-compressed data.

Full access
Jing Xu
,
M. W. Hoffman
,
B. L. Cheong
, and
R. D. Palmer

Abstract

A computationally simple cross-correlation model for multiple backscattering from a continuous wave (CW) noise radar is developed and verified with theoretical analysis and brute-force time-domain simulations. Based on this cross-correlation model, a modification of an existing numerical method originally developed by Holdsworth and Reid for spaced antenna (SA) pulsed radar is used to simulate the estimated cross correlation corresponding to atmospheric backscattering using a coherent CW noise radar. Subsequently, coherent radar imaging (CRI) processing comparisons between the CW noise radar and a conventional pulsed radar are presented that verify the potential of CW noise radar for atmospheric imaging.

Full access
B. L. Cheong
,
M. W. Hoffman
,
R. D. Palmer
,
Stephen J. Frasier
, and
F. J. López-Dekker

Abstract

This paper highlights recent results obtained with the Turbulent Eddy Profiler (TEP), which was developed by the University of Massachusetts. This unique 915-MHz radar has up to 64 spatially separated receiving elements, each with an independent receiver. The calibrated raw data provided by this array could be processed using sophisticated imaging algorithms to resolve the horizontal structures within each range gate. After collecting all of the closely spaced horizontal slices, the TEP radar can produce three-dimensional images of echo power, radial velocity, and spectral width. From the radial velocity measurements, it is possible to estimate the three-dimensional wind with high horizontal and vertical resolution. Given the flexibility of the TEP system, various array configurations are possible. In the present work exploitation of the flexibility of TEP is attempted to enhance the rejection of clutter from unwanted biological targets. From statistical studies, most biological clutter results from targets outside the main imaging field of view, that is, the sidelobes and grating lobes (if they exist) of the receiving beam. Because the TEP array's minimum receiver separation exceeds the spatial Nyquist sampling requirement, substantial possibilities for grating-lobe clutter exist and are observed in actual array data. When imaging over the transmit beam volume, the receiving array main lobe is scanned over a ±12.5° region. This scanning also sweeps the grating lobes over a wide angular region, virtually guaranteeing that a biological scatterer outside of the main beam will appear somewhere in the imaged volume. This paper focuses on suppressing pointlike targets in the grating-lobe regions. With a subtle change to the standard TEP array hardware configuration, it is shown via simulations and actual experimental observations (collected in June 2003) that adaptive beamforming methods can subsequently be used to significantly suppress the effects of point targets on the wind field estimates. These pointlike targets can be birds or planes with strong reflectivity. By pointlike the authors mean its appearance is a distinct point (up to the imaging resolution) in the images. The pointlike strong reflectivity signature exploits the capability of adaptive beamforming to suppress the interference using the new array configuration. It should be noted that this same array configuration does not exhibit this beneficial effect when standard Fourier beamforming is employed.

Full access
M. F. Larsen
,
R. D. Palmer
,
S. Fukao
,
R. F. Woodman
,
M. Yamamoto
,
T. Tsuda
, and
S. Kato

Abstract

We present a method for deriving horizontal velocities, vertical velocities, and in-beam incidence angles from radar interferometer data. All parameters are calculated from the slope and intercept of straight lines fitted in a least-squares sense to the variation of the signal phase as a function of radial velocity for each pair of receiving antennas. Advantages of the method are that the calculations are computationally fast and simple, and the analysis leads to relatively simple expressions for the uncertainty in the velocity measurements.

Full access
B. L. Cheong
,
R. D. Palmer
,
T-Y. Yu
,
K-F. Yang
,
M. W. Hoffman
,
S. J. Frasier
, and
F. J. Lopez-Dekker

Abstract

In this work, the accuracy of the Doppler beam-swinging (DBS) technique for wind measurements is studied using an imaging radar—the turbulent eddy profiler (TEP) developed by the University of Massachusetts, with data collected in summer 2003. With up to 64 independent receivers, and using coherent radar imaging (CRI), several hundred partially independent beams can be formed simultaneously within the volume defined by the transmit beam. By selecting a subset of these beams, an unprecedented number of DBS configurations with varying zenith angle, azimuth angle, and number of beams can be investigated. The angular distributions of echo power and radial velocity obtained by CRI provide a unique opportunity to validate the inherent assumption in the DBS method of homogeneity across the region defined by the beam directions. Through comparison with a reference wind field, calculated as the optimal uniform wind field derived from all CRI beams with sufficient signal-to-noise ratio (SNR), the accuracy of the wind estimates for various DBS configurations is statistically analyzed. It is shown that for a three-beam DBS configuration, although the validity of the homogeneity assumption is enhanced at smaller zenith angles, the root-mean-square (RMS) error increases because of the ill-conditioned matrix in the DBS algorithm. As expected, inhomogeneities in the wind field produce large bias for the three-beam DBS configuration for large zenith angles. An optimal zenith angle, in terms of RMS error, of approximately 9°–10° was estimated. It is further shown that RMS error can be significantly reduced by increasing the number of off-vertical beams used for the DBS processing.

Full access