Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: R. D. Palmer x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Peter J. Webster
,
Jun Jian
,
Thomas M. Hopson
,
Carlos D. Hoyos
,
Paula A. Agudelo
,
Hai-Ru Chang
,
Judith A. Curry
,
Robert L. Grossman
,
Timothy N. Palmer
, and
A. R. Subbiah

The authors have developed a new extended-range flood forecasting system for large river basins that uses satellite data and statistically rendered probabilistic weather and climate predictions to initialize basin-scale hydrological models. The forecasting system overcomes the absence of upstreamflow data, a problem that is prevalent in the developing world. Forecasts of the Ganges and Brahmaputra discharge into Bangladesh were made in real time on 1–10-day time horizons for the period 2003–08. Serious flooding of the Brahmaputra occurred in 2004, 2007, and 2008. Detailed forecasts of the flood onset and withdrawal were made 10 days in advance for each of the flooding events with correlations at 10 days ≥0.8 and Brier scores <0.05. Extensions to 15 days show useable skill. Based on the 1–10-day forecasts of the 2007 and 2008 floods, emergency managers in Bangladesh were able to act preemptively, arrange the evacuation of populations in peril along the Brahmaputra, and minimize financial loss. The particular application of this forecast scheme in Bangladesh represents a “world is f lat” approach to emergency management through the collaboration of scientists in Europe (generating global ensemble meteorological and climate forecasts), the United States (developing and producing the integrated flood forecasts), and the developing world (integrating the flood forecasts into their disaster management decision-making protocol), all enabled by high-speed Internet connections. We also make suggestions of how scientific and technical collaborations between more developed and developing nations can be improved to increase their prospects for sustaining the technology adoption and transfer.

Full access
N. R. P. Harris
,
L. J. Carpenter
,
J. D. Lee
,
G. Vaughan
,
M. T. Filus
,
R. L. Jones
,
B. OuYang
,
J. A. Pyle
,
A. D. Robinson
,
S. J. Andrews
,
A. C. Lewis
,
J. Minaeian
,
A. Vaughan
,
J. R. Dorsey
,
M. W. Gallagher
,
M. Le Breton
,
R. Newton
,
C. J. Percival
,
H. M. A. Ricketts
,
S. J.-B. Bauguitte
,
G. J. Nott
,
A. Wellpott
,
M. J. Ashfold
,
J. Flemming
,
R. Butler
,
P. I. Palmer
,
P. H. Kaye
,
C. Stopford
,
C. Chemel
,
H. Boesch
,
N. Humpage
,
A. Vick
,
A. R. MacKenzie
,
R. Hyde
,
P. Angelov
,
E. Meneguz
, and
A. J. Manning

Abstract

The main field activities of the Coordinated Airborne Studies in the Tropics (CAST) campaign took place in the west Pacific during January–February 2014. The field campaign was based in Guam (13.5°N, 144.8°E), using the U.K. Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 atmospheric research aircraft, and was coordinated with the Airborne Tropical Tropopause Experiment (ATTREX) project with an unmanned Global Hawk and the Convective Transport of Active Species in the Tropics (CONTRAST) campaign with a Gulfstream V aircraft. Together, the three aircraft were able to make detailed measurements of atmospheric structure and composition from the ocean surface to 20 km. These measurements are providing new information about the processes influencing halogen and ozone levels in the tropical west Pacific, as well as the importance of trace-gas transport in convection for the upper troposphere and stratosphere. The FAAM aircraft made a total of 25 flights in the region between 1°S and 14°N and 130° and 155°E. It was used to sample at altitudes below 8 km, with much of the time spent in the marine boundary layer. It measured a range of chemical species and sampled extensively within the region of main inflow into the strong west Pacific convection. The CAST team also made ground-based measurements of a number of species (including daily ozonesondes) at the Atmospheric Radiation Measurement Program site on Manus Island, Papua New Guinea (2.1°S, 147.4°E). This article presents an overview of the CAST project, focusing on the design and operation of the west Pacific experiment. It additionally discusses some new developments in CAST, including flights of new instruments on board the Global Hawk in February–March 2015.

Open access
G. Janssens-Maenhout
,
B. Pinty
,
M. Dowell
,
H. Zunker
,
E. Andersson
,
G. Balsamo
,
J.-L. Bézy
,
T. Brunhes
,
H. Bösch
,
B. Bojkov
,
D. Brunner
,
M. Buchwitz
,
D. Crisp
,
P. Ciais
,
P. Counet
,
D. Dee
,
H. Denier van der Gon
,
H. Dolman
,
M. R. Drinkwater
,
O. Dubovik
,
R. Engelen
,
T. Fehr
,
V. Fernandez
,
M. Heimann
,
K. Holmlund
,
S. Houweling
,
R. Husband
,
O. Juvyns
,
A. Kentarchos
,
J. Landgraf
,
R. Lang
,
A. Löscher
,
J. Marshall
,
Y. Meijer
,
M. Nakajima
,
P. I. Palmer
,
P. Peylin
,
P. Rayner
,
M. Scholze
,
B. Sierk
,
J. Tamminen
, and
P. Veefkind
Full access
G. Janssens-Maenhout
,
B. Pinty
,
M. Dowell
,
H. Zunker
,
E. Andersson
,
G. Balsamo
,
J.-L. Bézy
,
T. Brunhes
,
H. Bösch
,
B. Bojkov
,
D. Brunner
,
M. Buchwitz
,
D. Crisp
,
P. Ciais
,
P. Counet
,
D. Dee
,
H. Denier van der Gon
,
H. Dolman
,
M. R. Drinkwater
,
O. Dubovik
,
R. Engelen
,
T. Fehr
,
V. Fernandez
,
M. Heimann
,
K. Holmlund
,
S. Houweling
,
R. Husband
,
O. Juvyns
,
A. Kentarchos
,
J. Landgraf
,
R. Lang
,
A. Löscher
,
J. Marshall
,
Y. Meijer
,
M. Nakajima
,
P. I. Palmer
,
P. Peylin
,
P. Rayner
,
M. Scholze
,
B. Sierk
,
J. Tamminen
, and
P. Veefkind

Abstract

Under the Paris Agreement (PA), progress of emission reduction efforts is tracked on the basis of regular updates to national greenhouse gas (GHG) inventories, referred to as bottom-up estimates. However, only top-down atmospheric measurements can provide observation-based evidence of emission trends. Today, there is no internationally agreed, operational capacity to monitor anthropogenic GHG emission trends using atmospheric measurements to complement national bottom-up inventories. The European Commission (EC), the European Space Agency, the European Centre for Medium-Range Weather Forecasts, the European Organisation for the Exploitation of Meteorological Satellites, and international experts are joining forces to develop such an operational capacity for monitoring anthropogenic CO2 emissions as a new CO2 service under the EC’s Copernicus program. Design studies have been used to translate identified needs into defined requirements and functionalities of this anthropogenic CO2 emissions Monitoring and Verification Support (CO2MVS) capacity. It adopts a holistic view and includes components such as atmospheric spaceborne and in situ measurements, bottom-up CO2 emission maps, improved modeling of the carbon cycle, an operational data-assimilation system integrating top-down and bottom-up information, and a policy-relevant decision support tool. The CO2MVS capacity with operational capabilities by 2026 is expected to visualize regular updates of global CO2 emissions, likely at 0.05° x 0.05°. This will complement the PA’s enhanced transparency framework, providing actionable information on anthropogenic CO2 emissions that are the main driver of climate change. This information will be available to all stakeholders, including governments and citizens, allowing them to reflect on trends and effectiveness of reduction measures. The new EC gave the green light to pass the CO2MVS from exploratory to implementing phase.

Free access
J. L. Kinter III
,
B. Cash
,
D. Achuthavarier
,
J. Adams
,
E. Altshuler
,
P. Dirmeyer
,
B. Doty
,
B. Huang
,
E. K. Jin
,
L. Marx
,
J. Manganello
,
C. Stan
,
T. Wakefield
,
T. Palmer
,
M. Hamrud
,
T. Jung
,
M. Miller
,
P. Towers
,
N. Wedi
,
M. Satoh
,
H. Tomita
,
C. Kodama
,
T. Nasuno
,
K. Oouchi
,
Y. Yamada
,
H. Taniguchi
,
P. Andrews
,
T. Baer
,
M. Ezell
,
C. Halloy
,
D. John
,
B. Loftis
,
R. Mohr
, and
K. Wong

The importance of using dedicated high-end computing resources to enable high spatial resolution in global climate models and advance knowledge of the climate system has been evaluated in an international collaboration called Project Athena. Inspired by the World Modeling Summit of 2008 and made possible by the availability of dedicated high-end computing resources provided by the National Science Foundation from October 2009 through March 2010, Project Athena demonstrated the sensitivity of climate simulations to spatial resolution and to the representation of subgrid-scale processes with horizontal resolutions up to 10 times higher than contemporary climate models. While many aspects of the mean climate were found to be reassuringly similar, beyond a suggested minimum resolution, the magnitudes and structure of regional effects can differ substantially. Project Athena served as a pilot project to demonstrate that an effective international collaboration can be formed to efficiently exploit dedicated supercomputing resources. The outcomes to date suggest that, in addition to substantial and dedicated computing resources, future climate modeling and prediction require a substantial research effort to efficiently explore the fidelity of climate models when explicitly resolving important atmospheric and oceanic processes.

Full access
Judith Berner
,
Ulrich Achatz
,
Lauriane Batté
,
Lisa Bengtsson
,
Alvaro de la Cámara
,
Hannah M. Christensen
,
Matteo Colangeli
,
Danielle R. B. Coleman
,
Daan Crommelin
,
Stamen I. Dolaptchiev
,
Christian L. E. Franzke
,
Petra Friederichs
,
Peter Imkeller
,
Heikki Järvinen
,
Stephan Juricke
,
Vassili Kitsios
,
François Lott
,
Valerio Lucarini
,
Salil Mahajan
,
Timothy N. Palmer
,
Cécile Penland
,
Mirjana Sakradzija
,
Jin-Song von Storch
,
Antje Weisheimer
,
Michael Weniger
,
Paul D. Williams
, and
Jun-Ichi Yano

Abstract

The last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans, land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined.

Full access