Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: R. D. Palmer x
- Weather and Forecasting x
- Refine by Access: All Content x
Abstract
The 2007 and 2008 spring refractivity experiments at KTLX investigated the potential utility of high-resolution, near-surface refractivity measurements to operational forecasting. During these experiments, forecasters at the Norman, Oklahoma, National Weather Service Forecast Office (NWSFO) assessed refractivity and scan-to-scan refractivity change fields retrieved from the Weather Surveillance Radar-1988 Doppler weather radar near Oklahoma City—Twin Lakes, Oklahoma (KTLX). Both quantitative and qualitative analysis methods were used to analyze the 41 responses from seven forecasters to a questionnaire designed to measure the impact of refractivity fields on forecast operations. The analysis revealed that forecasts benefited from the refractivity fields on 25% of the days included in the evaluation. In each of these cases, the refractivity fields provided complementary information that somewhat enhanced the forecasters’ capability to analyze the near-surface environment and boosted their confidence in moisture trends. A case in point was the ability to track a retreating dryline after its location was obscured by a weak reflectivity bloom caused by biological scatterers. Forecasters unanimously agreed, however, that the impact of this complementary information on their forecasts was too insignificant to justify its addition as an operational dataset. The applicability of these findings to other NWSFOs may be limited to locations with similar weather situations and access to surface data networks like the Oklahoma Mesonet.
Abstract
The 2007 and 2008 spring refractivity experiments at KTLX investigated the potential utility of high-resolution, near-surface refractivity measurements to operational forecasting. During these experiments, forecasters at the Norman, Oklahoma, National Weather Service Forecast Office (NWSFO) assessed refractivity and scan-to-scan refractivity change fields retrieved from the Weather Surveillance Radar-1988 Doppler weather radar near Oklahoma City—Twin Lakes, Oklahoma (KTLX). Both quantitative and qualitative analysis methods were used to analyze the 41 responses from seven forecasters to a questionnaire designed to measure the impact of refractivity fields on forecast operations. The analysis revealed that forecasts benefited from the refractivity fields on 25% of the days included in the evaluation. In each of these cases, the refractivity fields provided complementary information that somewhat enhanced the forecasters’ capability to analyze the near-surface environment and boosted their confidence in moisture trends. A case in point was the ability to track a retreating dryline after its location was obscured by a weak reflectivity bloom caused by biological scatterers. Forecasters unanimously agreed, however, that the impact of this complementary information on their forecasts was too insignificant to justify its addition as an operational dataset. The applicability of these findings to other NWSFOs may be limited to locations with similar weather situations and access to surface data networks like the Oklahoma Mesonet.
Abstract
This study investigates the use of tornadic debris signature (TDS) parameters to estimate tornado damage severity using Norman, Oklahoma (KOUN), polarimetric radar data (polarimetric version of the Weather Surveillance Radar-1988 Doppler radar). Several TDS parameters are examined, including parameters based on the 10th or 90th percentiles of polarimetric variables (lowest tilt TDS parameters) and TDS parameters based on the TDS volumetric coverage (spatial TDS parameters). Two highly detailed National Weather Service (NWS) damage surveys are compared to TDS parameters. The TDS parameters tend to be correlated with the enhanced Fujita scale (EF) rating. The 90th percentile reflectivity, TDS height, and TDS volume increase during tornado intensification and decrease during tornado dissipation. For 14 tornado cases, the maximum or minimum TDS parameter values are compared to the tornado’s EF rating. For tornadoes with a higher EF rating, higher maximum values of the 90th percentile Z HH, TDS height, and volume, as well as lower minimum values of 10th percentile ρ HV and Z DR, are observed. Maxima in spatial TDS parameters are observed after periods of severe, widespread tornado damage for violent tornadoes. This paper discusses how forecasters could use TDS parameters to obtain near-real-time information about tornado damage severity and spatial extent.
Abstract
This study investigates the use of tornadic debris signature (TDS) parameters to estimate tornado damage severity using Norman, Oklahoma (KOUN), polarimetric radar data (polarimetric version of the Weather Surveillance Radar-1988 Doppler radar). Several TDS parameters are examined, including parameters based on the 10th or 90th percentiles of polarimetric variables (lowest tilt TDS parameters) and TDS parameters based on the TDS volumetric coverage (spatial TDS parameters). Two highly detailed National Weather Service (NWS) damage surveys are compared to TDS parameters. The TDS parameters tend to be correlated with the enhanced Fujita scale (EF) rating. The 90th percentile reflectivity, TDS height, and TDS volume increase during tornado intensification and decrease during tornado dissipation. For 14 tornado cases, the maximum or minimum TDS parameter values are compared to the tornado’s EF rating. For tornadoes with a higher EF rating, higher maximum values of the 90th percentile Z HH, TDS height, and volume, as well as lower minimum values of 10th percentile ρ HV and Z DR, are observed. Maxima in spatial TDS parameters are observed after periods of severe, widespread tornado damage for violent tornadoes. This paper discusses how forecasters could use TDS parameters to obtain near-real-time information about tornado damage severity and spatial extent.