Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: R. E. Dickinson x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Menglin Jin
,
R. E. Dickinson
, and
A. M. Vogelmann

Abstract

This paper reports on two types of comparisons that were conducted. First, 10-yr modeled skin temperatures were compared with observations to evaluate model simulations of this quantity. The simulations were conducted with the NCAR CCM2 coupled with the Biosphere–Atmosphere Transfer Scheme (BATS). The observations were obtained from TIROS-N/HIRS-2 and the First ISLSCP Field Experiment in situ measurements. Second, modeled skin temperatures were compared with surface-air temperatures to illustrate the differences between them at various spatial and temporal resolutions. This is the first such study of skin temperature in a GCM.

When compared with the observations, it is evident that the CCM2–BATS can successfully reproduce many features of skin temperature, including its global-scale pattern, seasonal and diurnal variations, and the effects of the land surface type. However, modeled skin temperature seems to be underestimated in high latitudes in January and overestimated in low- and midlatitudes, especially over arid and semiarid regions in July.

Statistical analyses suggest that the differences between skin and surface-air temperatures are scale dependent. They differ the most at smaller scales and are most similar at larger scales (i.e., they differ the most for regional scales and diurnally, and agree more closely on monthly scales and hemispheric spatial scales). The similarity between skin and air temperatures averaged over monthly and large spatial scales implies that the well-established surface-air temperature measurements may be used to validate satellite-obtained skin temperatures. The differences between skin temperature and air temperature are greatest in the winter hemisphere. The monthly maximum skin temperature is greater than maximum air temperature by about 3.5°–5.5°C, and minimum skin temperature is less than minimum air temperature by 3.0°–4.5°C. For monthly time averaging and continental or hemispheric spatial scales, skin temperature is consistently lower than air temperature by about 0.5°–1.0°C.

This work also studies the effects of different land types, vegetative cover, soil wetness, and cloud cover on skin temperature. These effects are partially responsible for the differences between skin and surface-air temperatures. These results are similar to those from earlier studies done at specific sites.

Full access
J. Jin
,
X. Gao
,
Z.-L. Yang
,
R. C. Bales
,
S. Sorooshian
,
R. E. Dickinson
,
S. F. Sun
, and
G. X. Wu

Abstract

A comparative study of three snow models with different complexities was carried out to assess how a physically detailed snow model can improve snow modeling within general circulation models. The three models were (a) the U.S. Army Cold Regions Research and Engineering Laboratory Model (SNTHERM), which uses the mixture theory to simulate multiphase water and energy transfer processes in snow layers; (b) a simplified three-layer model, Snow–Atmosphere–Soil Transfer (SAST), which includes only the ice and liquid-water phases;and (c) the snow submodel of the Biosphere–Atmosphere Transfer Scheme (BATS), which calculates snowmelt from the energy budget and snow temperature by the force–restore method. Given the same initial conditions and forcing of atmosphere and radiation, these three models simulated time series of snow water equivalent, surface temperature, and fluxes very well, with SNTHERM giving the best match with observations and SAST simulation being close. BATS captured the major processes in the upper portion of a snowpack where solar radiation provides the main energy source and gave satisfying results for seasonal periods. Some biases occurred in BATS surface temperature and energy exchange due to its neglecting of liquid water and underestimating snow density. Ice heat conduction, meltwater heat transport, and the melt–freeze process of snow exhibit strong diurnal variations and large gradients at the uppermost layers of snowpacks. Using two layers in the upper 20 cm and one deeper layer at the bottom to simulate the multiphase snowmelt processes, SAST closely approximated the performance of SNTHERM with computational requirements comparable to those of BATS.

Full access
T. H. Chen
,
A. Henderson-Sellers
,
P. C. D. Milly
,
A. J. Pitman
,
A. C. M. Beljaars
,
J. Polcher
,
F. Abramopoulos
,
A. Boone
,
S. Chang
,
F. Chen
,
Y. Dai
,
C. E. Desborough
,
R. E. Dickinson
,
L. Dümenil
,
M. Ek
,
J. R. Garratt
,
N. Gedney
,
Y. M. Gusev
,
J. Kim
,
R. Koster
,
E. A. Kowalczyk
,
K. Laval
,
J. Lean
,
D. Lettenmaier
,
X. Liang
,
J.-F. Mahfouf
,
H.-T. Mengelkamp
,
K. Mitchell
,
O. N. Nasonova
,
J. Noilhan
,
A. Robock
,
C. Rosenzweig
,
J. Schaake
,
C. A. Schlosser
,
J.-P. Schulz
,
Y. Shao
,
A. B. Shmakin
,
D. L. Verseghy
,
P. Wetzel
,
E. F. Wood
,
Y. Xue
,
Z.-L. Yang
, and
Q. Zeng

Abstract

In the Project for Intercomparison of Land-Surface Parameterization Schemes phase 2a experiment, meteorological data for the year 1987 from Cabauw, the Netherlands, were used as inputs to 23 land-surface flux schemes designed for use in climate and weather models. Schemes were evaluated by comparing their outputs with long-term measurements of surface sensible heat fluxes into the atmosphere and the ground, and of upward longwave radiation and total net radiative fluxes, and also comparing them with latent heat fluxes derived from a surface energy balance. Tuning of schemes by use of the observed flux data was not permitted. On an annual basis, the predicted surface radiative temperature exhibits a range of 2 K across schemes, consistent with the range of about 10 W m−2 in predicted surface net radiation. Most modeled values of monthly net radiation differ from the observations by less than the estimated maximum monthly observational error (±10 W m−2). However, modeled radiative surface temperature appears to have a systematic positive bias in most schemes; this might be explained by an error in assumed emissivity and by models’ neglect of canopy thermal heterogeneity. Annual means of sensible and latent heat fluxes, into which net radiation is partitioned, have ranges across schemes of30 W m−2 and 25 W m−2, respectively. Annual totals of evapotranspiration and runoff, into which the precipitation is partitioned, both have ranges of 315 mm. These ranges in annual heat and water fluxes were approximately halved upon exclusion of the three schemes that have no stomatal resistance under non-water-stressed conditions. Many schemes tend to underestimate latent heat flux and overestimate sensible heat flux in summer, with a reverse tendency in winter. For six schemes, root-mean-square deviations of predictions from monthly observations are less than the estimated upper bounds on observation errors (5 W m−2 for sensible heat flux and 10 W m−2 for latent heat flux). Actual runoff at the site is believed to be dominated by vertical drainage to groundwater, but several schemes produced significant amounts of runoff as overland flow or interflow. There is a range across schemes of 184 mm (40% of total pore volume) in the simulated annual mean root-zone soil moisture. Unfortunately, no measurements of soil moisture were available for model evaluation. A theoretical analysis suggested that differences in boundary conditions used in various schemes are not sufficient to explain the large variance in soil moisture. However, many of the extreme values of soil moisture could be explained in terms of the particulars of experimental setup or excessive evapotranspiration.

Full access