Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: R. J. Fleming x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
R. J. Fleming
,
T. M. Kaneshige
, and
W. E. McGovern

An unprecedented analysis of the atmosphere of planet Earth is currently underway with the involvement of over 140 countries in the Global Weather Experiment—the largest international scientific experiment yet attempted. After many years of planning, the Operational Year began in December of 1978. Following the field phase and data management phase, a multi-year evaluation and research program will commence and continue until the late 1980s. During this period, scientists and technicians will examine the atmosphere, the sea surface, and the upper layer of the world's oceans in the most intense survey and study ever made. A number of successes and failures occurred in preparing for the observing phase and these are mentioned as each observing system actually deployed in the field is reviewed. The focus of the paper is on the quantity of data gathered and how it was obtained. The article concludes with some suggestions for assurances of final success of the Experiment.

Full access
R. J. Fleming
,
T. M. Kaneshige
,
W. E. McGovern
, and
T. E. Bryan

During the Second Special Observing Period of May and June 1979, the Global Weather Experiment reached a peak. At this time the largest concentration of resources ever assembled was deployed to meet the challenge of observing the atmosphere and oceans to an unprecedented degree. This article outlines this effort and highlights the various observing systems involved in this effort—in particular the quantity of observations gathered from each major system.

Full access
R. H. Moss
,
S. Avery
,
K. Baja
,
M. Burkett
,
A. M. Chischilly
,
J. Dell
,
P. A. Fleming
,
K. Geil
,
K. Jacobs
,
A. Jones
,
K. Knowlton
,
J. Koh
,
M. C. Lemos
,
J. Melillo
,
R. Pandya
,
T. C. Richmond
,
L. Scarlett
,
J. Snyder
,
M. Stults
,
A. Waple
,
J. Whitehead
,
D. Zarrilli
,
J. Fox
,
A. Ganguly
,
L. Joppa
,
S. Julius
,
P. Kirshen
,
R. Kreutter
,
A. McGovern
,
R. Meyer
,
J. Neumann
,
W. Solecki
,
J. Smith
,
P. Tissot
,
G. Yohe
, and
R. Zimmerman
Full access
Elmar R. Reiter
,
John D. Sheaffer
,
James E. Bossert
,
Richard C. Fleming
,
William E. Clements
,
J. T. Lee
,
Sumner Barr
,
John A. Archuleta
, and
Donald E. Hoard

During the late summer of 1985 a field experiment was conducted to investigate mountaintop winds over a broad area of the Rocky Mountains extending from south central Wyoming through northern New Mexico. The principal motivation for this experiment was to further investigate an unexpectedly strong and potentially important wind cycle observed at mountaintop in north central Colorado during August 1984. These winds frequently exhibited nocturnal maxima of 20 to 30 m · s−1 from southeasterly directions and often persisted for eight to ten hours. It appears that these winds originate as outflow from intense mesoscale convective systems that form daily over highland areas along the Continental Divide. However, details of the spatial extent and variability of these winds could not be determined from “routine” regional weather data that are mostly collected in valleys. Although synoptic conditions during much of the 1985 experiment period did not favor diurnally recurring convection over the study area, sufficient data were obtained to verify the regional-scale organization of strong convective outflow at mountaintop elevations. In addition, the usefulness and feasibility of a mountain-peak weather-data network for routine synoptic analysis is demonstrated.

Full access
S. I. Bohnenstengel
,
S. E. Belcher
,
A. Aiken
,
J. D. Allan
,
G. Allen
,
A. Bacak
,
T. J. Bannan
,
J. F. Barlow
,
D. C. S. Beddows
,
W. J. Bloss
,
A. M. Booth
,
C. Chemel
,
O. Coceal
,
C. F. Di Marco
,
M. K. Dubey
,
K. H. Faloon
,
Z. L. Fleming
,
M. Furger
,
J. K. Gietl
,
R. R. Graves
,
D. C. Green
,
C. S. B. Grimmond
,
C. H. Halios
,
J. F. Hamilton
,
R. M. Harrison
,
M. R. Heal
,
D. E. Heard
,
C. Helfter
,
S. C. Herndon
,
R. E. Holmes
,
J. R. Hopkins
,
A. M. Jones
,
F. J. Kelly
,
S. Kotthaus
,
B. Langford
,
J. D. Lee
,
R. J. Leigh
,
A. C. Lewis
,
R. T. Lidster
,
F. D. Lopez-Hilfiker
,
J. B. McQuaid
,
C. Mohr
,
P. S. Monks
,
E. Nemitz
,
N. L. Ng
,
C. J. Percival
,
A. S. H. Prévôt
,
H. M. A. Ricketts
,
R. Sokhi
,
D. Stone
,
J. A. Thornton
,
A. H. Tremper
,
A. C. Valach
,
S. Visser
,
L. K. Whalley
,
L. R. Williams
,
L. Xu
,
D. E. Young
, and
P. Zotter

Abstract

Air quality and heat are strong health drivers, and their accurate assessment and forecast are important in densely populated urban areas. However, the sources and processes leading to high concentrations of main pollutants, such as ozone, nitrogen dioxide, and fine and coarse particulate matter, in complex urban areas are not fully understood, limiting our ability to forecast air quality accurately. This paper introduces the Clean Air for London (ClearfLo; www.clearflo.ac.uk) project’s interdisciplinary approach to investigate the processes leading to poor air quality and elevated temperatures.

Within ClearfLo, a large multi-institutional project funded by the U.K. Natural Environment Research Council (NERC), integrated measurements of meteorology and gaseous, and particulate composition/loading within the atmosphere of London, United Kingdom, were undertaken to understand the processes underlying poor air quality. Long-term measurement infrastructure installed at multiple levels (street and elevated), and at urban background, curbside, and rural locations were complemented with high-resolution numerical atmospheric simulations. Combining these (measurement–modeling) enhances understanding of seasonal variations in meteorology and composition together with the controlling processes. Two intensive observation periods (winter 2012 and the Summer Olympics of 2012) focus upon the vertical structure and evolution of the urban boundary layer; chemical controls on nitrogen dioxide and ozone production—in particular, the role of volatile organic compounds; and processes controlling the evolution, size, distribution, and composition of particulate matter. The paper shows that mixing heights are deeper over London than in the rural surroundings and that the seasonality of the urban boundary layer evolution controls when concentrations peak. The composition also reflects the seasonality of sources such as domestic burning and biogenic emissions.

Full access