Search Results

You are looking at 1 - 8 of 8 items for :

  • Author or Editor: R. M. Hardesty x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: All Content x
Clear All Modify Search
R. M. Hardesty
and
B. F. Weber

Abstract

We used a continuous-wave (CW) Doppler lidar to measure wind velocity turbulence from a moving frame of reference. By directing the lidar beam to trace the perimeters of vertical-plane disks about horizontal axes parallel to the mean wind direction, we observed turbulence properties similar to those encountered by the tips of revolving turbine blades. As in other measurements made with in situ sensors, turbulence spectra observed from the moving reference points showed a decrease in energy, relative to fixed point observations, at frequencies just below the rotation frequency of the lidar beam, and an increase in energy within discrete spectral bands at higher frequencies. Comparisons with a simple model showed reasonable agreement, although measurement conditions did not correspond to the assumptions of the model. On the basis of the results of this experiment, we conclude that Doppler lidar, with appropriate signal processing, is quite applicable for measurement of turbulence encountered by spinning wind turbines.

Full access
G. Feingold
,
S. Yang
,
R. M. Hardesty
, and
W. R. Cotton

Abstract

This paper explores the possibilities of using K a -band Doppler radar, microwave radiometer, and lidar as a means of retrieving cloud condensation nucleus (CCN) properties in the stratocumulus-capped marine boundary layer. The retrieval is based on the intimate relationship between the cloud drop number concentration, the vertical air motion at cloud base, and the CCN activation spectrum parameters. The CCN properties that are sought are the C and k parameters in the N = CS k relationship, although activation spectra based on the lognormal distribution of particles is also straightforward. Cloud droplet concentration at cloud base is retrieved from a Doppler cloud radar combined with a microwave radiometer following a previously published technique. Cloud base is determined from a lidar or ceilometer. Vertical velocity just above cloud base is determined from the vertically pointing Doppler cloud radar. By combining the simultaneous retrievals of drop number and vertical velocity, and assuming theoretical relationships between these parameters and the subcloud aerosol parameters, the C parameter can be derived, under the assumption of a fixed k. If a calibrated backscatter lidar measurement is available, retrieval of both C and k parameters is possible. The retrieval is demonstrated for a dataset acquired during the Atlantic Stratocumulus Transition Experiment using a least squares minimization technique. Sensitivity to assumptions used in the retrieval is investigated. It is suggested that this technique may afford the acquisition of long-term datasets for climate monitoring purposes. Further investigation with focused experiments designed to address the issue more rigorously is required.

Full access
S. Baidar
,
S. C. Tucker
,
M. Beaubien
, and
R. M. Hardesty

Abstract

A two-look airborne Doppler wind lidar operating at the 532-nm laser wavelength, the Green Optical Autocovariance Wind Lidar (GrOAWL), was built and flown aboard the NASA WB-57 research aircraft. Flight campaign goals were to validate the instrument wind measurements and to demonstrate the two-look measurement concept proposed for spaceborne mission concepts such as the Atmospheric Transport, Hurricanes, and Extratropical Numerical Weather Prediction with the Optical Autocovariance Wind Lidar (ATHENA-OAWL) mission. The GrOAWL-measured winds were compared with collocated dropsonde measurements. Line-of-sight velocity (LOSV) measurements for the individual GrOAWL looks showed excellent agreement with dropsondes (R 2 > 0.9). The LOSV biases were very small and not statistically different from 0 m s−1 at the 95% confidence interval (−0.07 ± 0.07 m s−1 and 0.01 ± 0.07 m s−1 for look 1 and look 2, respectively). The wind speed and direction profiles retrieved by combining the two GrOAWL looks were also in very good agreement (R 2 > 0.85). An instrument performance model indicated the instrument wind measurement precision was likely lowered (uncertainty was increased) by a factor of ~3.3 during the flights relative to predicted “as built” instrument performance. The reduced performance was not observed during ground-based atmospheric testing and thus has been attributed to impacts of the harsh operating conditions of the WB-57 aircraft (high vibration, thermal gradients, and high humidity). The exercise of scaling the GrOAWL instrument performance and grid scale to space showed space-based OAWL wind measurements would yield products with precision at least as good as the GrOAWL instrument.

Open access
A. O. Langford
,
C. J. Senff
,
R. J. Alvarez II
,
R. M. Banta
,
R. M. Hardesty
,
D. D. Parrish
, and
T. B. Ryerson

Abstract

The NOAA airborne ozone lidar system [Tunable Optical Profiler for Aerosol and Ozone (TOPAZ)] is compared with the fast-response chemiluminescence sensor flown aboard the NOAA WP-3D during the 2006 Texas Air Quality Study (TexAQS). TOPAZ measurements made from the NOAA Twin Otter, flying at an altitude of ~3300 m MSL in the Houston, Texas, area on 31 August, and the Dallas, Texas, area on 13 September, show that the overall uncertainty in the 10-s (~600-m horizontal resolution) TOPAZ profiles is dominated by statistical uncertainties (1σ) of ~8 ppbv (6%–10%) at ranges of ~2300 m from the aircraft (~1000 m MSL), and ~11–27 ppbv (12%–30%) at ranges of ~2800 m (~500 m MSL). These uncertainties are substantially reduced by spatial averaging, and the averages of 11 profiles (of 110 s or 6.6-km horizontal resolution) at ~1000 m MSL are in excellent agreement (±2%) with the in situ measurements at ~500 m MSL. The TOPAZ measurements at lower altitudes on 31 August exhibit a negative bias of up to ~15%, however, when the lidar signals were strongly attenuated by very high ozone levels in the plume from the Houston Ship Channel. This bias appears to result from nonlinear behavior in the TOPAZ signal amplifiers, which is described in the companion paper by Alvarez et al. An empirical correction is presented.

Full access
C. Kiemle
,
G. Ehret
,
A. Fix
,
M. Wirth
,
G. Poberaj
,
W. A. Brewer
,
R. M. Hardesty
,
C. Senff
, and
M. A. LeMone

Abstract

Latent heat flux profiles in the convective boundary layer (CBL) are obtained for the first time with the combination of the Deutsches Zentrum für Luft- und Raumfahrt (DLR) water vapor differential absorption lidar (DIAL) and the NOAA high resolution Doppler wind lidar (HRDL). Both instruments were integrated nadir viewing on board the DLR Falcon research aircraft during the International H2O Project (IHOP_2002) over the U.S. Southern Great Plains. Flux profiles from 300 to 2500 m AGL are computed from high spatial resolution (150 m horizontal and vertical) two-dimensional water vapor and vertical velocity lidar cross sections using the eddy covariance technique. Three flight segments on 7 June 2002 between 1000 and 1300 LT over western Oklahoma and southwestern Kansas are analyzed. On two segments with strong convection, the latent heat flux peaks at (700 ± 200) W m−2 in the entrainment zone and decreases linearly to (200 ± 100) W m−2 in the lower CBL. A water vapor budget analysis reveals that this flux divergence [(0.9 ± 0.4) g kg−1 h−1] plus the advection (0.3 g kg−1 h−1) are nearly balanced by substantial CBL drying [(1.5 ± 0.2) g kg−1 h−1] observed by airborne and surface in situ instruments, within the limits of the overall budget rms error of 0.5 g kg−1 h−1. Entrainment of dry air from aloft and net upward humidity transport caused the CBL drying and finally inhibited the initiation of deep convection. All cospectra show significant contributions to the flux between 1- and 10-km wavelength, with peaks between 2 and 6 km, originating from large eddies. The main flux uncertainty is due to low sampling (55% rmse at mid-CBL), while instrument noise (15%) and systematic errors (7%) play a minor role. The combination of a water vapor and a wind lidar on an aircraft appears as an attractive new tool that allows measuring latent heat flux profiles from a single overflight of the investigated area.

Full access
Sara C. Tucker
,
Christoph J. Senff
,
Ann M. Weickmann
,
W. Alan Brewer
,
Robert M. Banta
,
Scott P. Sandberg
,
Daniel C. Law
, and
R. Michael Hardesty

Abstract

The concept of boundary layer mixing height for meteorology and air quality applications using lidar data is reviewed, and new algorithms for estimation of mixing heights from various types of lower-tropospheric coherent Doppler lidar measurements are presented. Velocity variance profiles derived from Doppler lidar data demonstrate direct application to mixing height estimation, while other types of lidar profiles demonstrate relationships to the variance profiles and thus may also be used in the mixing height estimate. The algorithms are applied to ship-based, high-resolution Doppler lidar (HRDL) velocity and backscattered-signal measurements acquired on the R/V Ronald H. Brown during Texas Air Quality Study (TexAQS) 2006 to demonstrate the method and to produce mixing height estimates for that experiment. These combinations of Doppler lidar–derived velocity measurements have not previously been applied to analysis of boundary layer mixing height—over the water or elsewhere. A comparison of the results to those derived from ship-launched, balloon-radiosonde potential temperature and relative humidity profiles is presented.

Full access
R. J. Alvarez II
,
C. J. Senff
,
A. O. Langford
,
A. M. Weickmann
,
D. C. Law
,
J. L. Machol
,
D. A. Merritt
,
R. D. Marchbanks
,
S. P. Sandberg
,
W. A. Brewer
,
R. M. Hardesty
, and
R. M. Banta

Abstract

The National Oceanic and Atmospheric Administration/Earth System Research Laboratory/Chemical Sciences Division (NOAA/ESRL/CSD) has developed a versatile, airborne lidar system for measuring ozone and aerosols in the boundary layer and lower free troposphere. The Tunable Optical Profiler for Aerosol and Ozone (TOPAZ) lidar was deployed aboard a NOAA Twin Otter aircraft during the Texas Air Quality Study (TexAQS 2006) and the California Research at the Nexus of Air Quality and Climate Change (CalNex 2010) field campaigns. TOPAZ is capable of measuring ozone concentrations in the lower troposphere with uncertainties of several parts per billion by volume at 90-m vertical and 600-m horizontal resolution from an aircraft flying at 60 m s−1. The system also provides uncalibrated aerosol backscatter profiles at 18-m vertical and 600-m horizontal resolution. TOPAZ incorporates state-of-the-art technologies, including a cerium-doped lithium calcium aluminum fluoride (Ce:LiCAF) laser, to make it compact and lightweight with low power consumption. The tunable, three-wavelength UV laser source makes it possible to optimize the wavelengths for differing atmospheric conditions, reduce the interference from other atmospheric constituents, and implement advanced analysis techniques. This paper describes the TOPAZ lidar, its components and performance during testing and field operation, and the data analysis procedure, including a discussion of error sources. The performance characteristics are illustrated through a comparison between TOPAZ and an ozonesonde launched during the TexAQS 2006 field campaign. A more comprehensive set of comparisons with in situ measurements during TexAQS 2006 and an assessment of the TOPAZ accuracy and precision are presented in a companion paper.

Full access
Robert M. Banta
,
Yelena L. Pichugina
,
W. Alan Brewer
,
Julie K. Lundquist
,
Neil D. Kelley
,
Scott P. Sandberg
,
Raul J. Alvarez II
,
R. Michael Hardesty
, and
Ann M. Weickmann

Abstract

Wind turbine wakes in the atmosphere are three-dimensional (3D) and time dependent. An important question is how best to measure atmospheric wake properties, both for characterizing these properties observationally and for verification of numerical, conceptual, and physical (e.g., wind tunnel) models of wakes. Here a scanning, pulsed, coherent Doppler lidar is used to sample a turbine wake using 3D volume scan patterns that envelop the wake and simultaneously measure the inflow profile. The volume data are analyzed for quantities of interest, such as peak velocity deficit, downwind variability of the deficit, and downwind extent of the wake, in a manner that preserves the measured data. For the case study presented here, in which the wake was well defined in the lidar data, peak deficits of up to 80% were measured 0.6–2 rotor diameters (D) downwind of the turbine, and the wakes extended more than 11D downwind. Temporal wake variability over periods of minutes and the effects of atmospheric gusts and lulls in the inflow are demonstrated in the analysis. Lidar scanning trade-offs important to ensuring that the wake quantities of interest are adequately sampled by the scan pattern, including scan coverage, number of scans per volume, data resolution, and scan-cycle repeat interval, are discussed.

Full access