Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: R. M. Samelson x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Jeffrey Shaman
,
R. M. Samelson
, and
Eric Skyllingstad

Abstract

The intraseasonal variability of turbulent surface heat fluxes over the Gulf Stream extension and subtropical mode water regions of the North Atlantic, and long-term trends in these fluxes, are explored using NCEP–NCAR reanalysis. Wintertime sensible and latent heat fluxes from these surface waters are characterized by episodic high flux events due to cold air outbreaks from North America. Up to 60% of the November–March (NDJFM) total sensible heat flux and 45% of latent heat flux occurs on these high flux days. On average 41% (34%) of the total NDJFM sensible (latent) heat flux takes place during just 17% (20%) of the days. Over the last 60 years, seasonal NDJFM sensible and latent heat fluxes over the Climate Variability and Predictability (CLIVAR) Mode Water Dynamic Experiment (CLIMODE) region have increased owing to an increased number of high flux event days. The increased storm frequency has altered average wintertime temperature conditions in the region, producing colder surface air conditions over the North American eastern seaboard and Labrador Sea and warmer temperatures over the Sargasso Sea. These temperature changes have increased low-level vertical wind shear and baroclinicity along the North Atlantic storm track over the last 60 years and may further favor the trend of increasing storm frequency over the Gulf Stream extension and adjacent region.

Full access
Kathryn A. Kelly
,
R. Justin Small
,
R. M. Samelson
,
Bo Qiu
,
Terrence M. Joyce
,
Young-Oh Kwon
, and
Meghan F. Cronin

Abstract

In the Northern Hemisphere midlatitude western boundary current (WBC) systems there is a complex interaction between dynamics and thermodynamics and between atmosphere and ocean. Their potential contribution to the climate system motivated major parallel field programs in both the North Pacific [Kuroshio Extension System Study (KESS)] and the North Atlantic [Climate Variability and Predictability (CLIVAR) Mode Water Dynamics Experiment (CLIMODE)], and preliminary observations and analyses from these programs highlight that complexity. The Gulf Stream (GS) in the North Atlantic and the Kuroshio Extension (KE) in the North Pacific have broad similarities, as subtropical gyre WBCs, but they also have significant differences, which affect the regional air–sea exchange processes and their larger-scale interactions. The 15-yr satellite altimeter data record, which provides a rich source of information, is combined here with the longer historical record from in situ data to describe and compare the current systems. While many important similarities have been noted on the dynamic and thermodynamic aspects of the time-varying GS and KE, some not-so-subtle differences exist in current variability, mode water properties, and recirculation gyre structure. This paper provides a comprehensive comparison of these two current systems from both dynamical and thermodynamical perspectives with the goal of developing and evaluating hypotheses about the physics underlying the observed differences, and exploring the WBC’s potential to influence midlatitude sea–air interaction. Differences between the GS and KE systems offer opportunities to compare the dominant processes and thereby to advance understanding of their role in the climate system.

Full access
R. M. Samelson
,
E. D. Skyllingstad
,
D. B. Chelton
,
S. K. Esbensen
,
L. W. O'Neill
, and
N. Thum

Abstract

A simple quasi-equilibrium analytical model is used to explore hypotheses related to observed spatial correlations between sea surface temperatures and wind stress on horizontal scales of 50–500 km. It is argued that a plausible contributor to the observed correlations is the approximate linear relationship between the surface wind stress and stress boundary layer depth under conditions in which the stress boundary layer has come into approximate equilibrium with steady free-atmospheric forcing. Warmer sea surface temperature is associated with deeper boundary layers and stronger wind stress, while colder temperature is associated with shallower boundary layers and weaker wind stress. Two interpretations of a previous hypothesis involving the downward mixing of horizontal momentum are discussed, and it is argued that neither is appropriate for the warm-to-cold transition or quasi-equilibrium conditions, while one may be appropriate for the cold-to-warm transition. Solutions of a turbulent large-eddy simulation numerical model illustrate some of the processes represented in the analytical model. A dimensionless ratio γτA is introduced to measure the relative influence of lateral momentum advection and local surface stress on the boundary layer wind profile. It is argued that when γτA < 1, and under conditions in which the thermodynamically induced lateral pressure gradients are small, the boundary layer depth effect will dominate lateral advection and control the surface stress.

Full access