Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: R. Todling x
- Refine by Access: All Content x
Abstract
The fixed-lag Kalman smoother was proposed recently by S. E. Cohn et al. as a framework for providing retrospective data assimilation capability in atmospheric reanalysis projects. Retrospective data assimilation refers to the dynamically consistent incorporation of data observed well past each analysis time into each analysis. Like the Kalman filter, the fixed-lag Kalman smoother requires statistical information that is not available in practice and involves an excessive amount of computation if implemented by brute force, and must therefore be approximated sensibly to become feasible for operational use.
In this article the performance of suboptimal retrospective data assimilation systems (RDASs) based on a variety of approximations to the optimal fixed-lag Kalman smoother is evaluated. Since the fixed-lag Kalman smoother formulation employed in this work separates naturally into a (Kalman) filter portion and an optimal retrospective analysis portion, two suboptimal strategies are considered: (i) viable approximations to the Kalman filter portion coupled with the optimal retrospective analysis portion, and (ii) viable approximations to both portions. These two strategies are studied in the context of a linear dynamical model and observing system, since it is only under these circumstances that performance can be evaluated exactly. A shallow water model, linearized about an unstable basic flow, is used for this purpose.
Results indicate that retrospective data assimilation can be successful even when simple filtering schemes are used, such as one resembling current operational statistical analysis schemes. In this case, however, online adaptive tuning of the forecast error covariance matrix is necessary. The performance of this RDAS is similar to that of the Kalman filter itself. More sophisticated approximate filtering algorithms, such as ones employing singular values/vectors of the propagator or eigenvalues/vectors of the error covariances, as a way to account for error covariance propagation, lead to even better RDAS performance. Approximating both the filter and retrospective analysis portions of the RDAS is also shown to be an acceptable approach in some cases.
Abstract
The fixed-lag Kalman smoother was proposed recently by S. E. Cohn et al. as a framework for providing retrospective data assimilation capability in atmospheric reanalysis projects. Retrospective data assimilation refers to the dynamically consistent incorporation of data observed well past each analysis time into each analysis. Like the Kalman filter, the fixed-lag Kalman smoother requires statistical information that is not available in practice and involves an excessive amount of computation if implemented by brute force, and must therefore be approximated sensibly to become feasible for operational use.
In this article the performance of suboptimal retrospective data assimilation systems (RDASs) based on a variety of approximations to the optimal fixed-lag Kalman smoother is evaluated. Since the fixed-lag Kalman smoother formulation employed in this work separates naturally into a (Kalman) filter portion and an optimal retrospective analysis portion, two suboptimal strategies are considered: (i) viable approximations to the Kalman filter portion coupled with the optimal retrospective analysis portion, and (ii) viable approximations to both portions. These two strategies are studied in the context of a linear dynamical model and observing system, since it is only under these circumstances that performance can be evaluated exactly. A shallow water model, linearized about an unstable basic flow, is used for this purpose.
Results indicate that retrospective data assimilation can be successful even when simple filtering schemes are used, such as one resembling current operational statistical analysis schemes. In this case, however, online adaptive tuning of the forecast error covariance matrix is necessary. The performance of this RDAS is similar to that of the Kalman filter itself. More sophisticated approximate filtering algorithms, such as ones employing singular values/vectors of the propagator or eigenvalues/vectors of the error covariances, as a way to account for error covariance propagation, lead to even better RDAS performance. Approximating both the filter and retrospective analysis portions of the RDAS is also shown to be an acceptable approach in some cases.
Abstract
The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA’s Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses. Focusing on the satellite era, from 1979 to the present, MERRA has achieved its goals with significant improvements in precipitation and water vapor climatology. Here, a brief overview of the system and some aspects of its performance, including quality assessment diagnostics from innovation and residual statistics, is given.
By comparing MERRA with other updated reanalyses [the interim version of the next ECMWF Re-Analysis (ERA-Interim) and the Climate Forecast System Reanalysis (CFSR)], advances made in this new generation of reanalyses, as well as remaining deficiencies, are identified. Although there is little difference between the new reanalyses in many aspects of climate variability, substantial differences remain in poorly constrained quantities such as precipitation and surface fluxes. These differences, due to variations both in the models and in the analysis techniques, are an important measure of the uncertainty in reanalysis products. It is also found that all reanalyses are still quite sensitive to observing system changes. Dealing with this sensitivity remains the most pressing challenge for the next generation of reanalyses.
Production has now caught up to the current period and MERRA is being continued as a near-real-time climate analysis. The output is available online through the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC).
Abstract
The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA’s Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses. Focusing on the satellite era, from 1979 to the present, MERRA has achieved its goals with significant improvements in precipitation and water vapor climatology. Here, a brief overview of the system and some aspects of its performance, including quality assessment diagnostics from innovation and residual statistics, is given.
By comparing MERRA with other updated reanalyses [the interim version of the next ECMWF Re-Analysis (ERA-Interim) and the Climate Forecast System Reanalysis (CFSR)], advances made in this new generation of reanalyses, as well as remaining deficiencies, are identified. Although there is little difference between the new reanalyses in many aspects of climate variability, substantial differences remain in poorly constrained quantities such as precipitation and surface fluxes. These differences, due to variations both in the models and in the analysis techniques, are an important measure of the uncertainty in reanalysis products. It is also found that all reanalyses are still quite sensitive to observing system changes. Dealing with this sensitivity remains the most pressing challenge for the next generation of reanalyses.
Production has now caught up to the current period and MERRA is being continued as a near-real-time climate analysis. The output is available online through the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC).