Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: R. V. Anderson x
- Journal of Atmospheric and Oceanic Technology x
- Refine by Access: All Content x
Abstract
An untended instrument to measure ocean surface heat flux has been developed for use in support of field experiments and the investigation of heat flux parameterization techniques. The sensing component of the Skin-Layer Ocean Heat Flux Instrument (SOHFI) consists of two simple thermopile heat flux sensors suspended by a fiberglass mesh mounted inside a ring-shaped surface float. These sensors make direct measurements within the conduction layer, where they are held in place by a balance between surface tension and float buoyancy. The two sensors are designed with differing solar absorption properties so that surface heat flux can be distinguished from direct solar irradiance. Under laboratory conditions, the SOHFI measurements agree well with calorimetric measurements (generally to within 10%). Performance in freshwater and ocean environments is discussed in a companion paper.
Abstract
An untended instrument to measure ocean surface heat flux has been developed for use in support of field experiments and the investigation of heat flux parameterization techniques. The sensing component of the Skin-Layer Ocean Heat Flux Instrument (SOHFI) consists of two simple thermopile heat flux sensors suspended by a fiberglass mesh mounted inside a ring-shaped surface float. These sensors make direct measurements within the conduction layer, where they are held in place by a balance between surface tension and float buoyancy. The two sensors are designed with differing solar absorption properties so that surface heat flux can be distinguished from direct solar irradiance. Under laboratory conditions, the SOHFI measurements agree well with calorimetric measurements (generally to within 10%). Performance in freshwater and ocean environments is discussed in a companion paper.
Abstract
The Skin-Layer Ocean Heat Flux Instrument (SOHFI) described by Sromovsky et al. (Part I, this issue) was field-tested in a combination of freshwater and ocean deployments. Solar irradiance monitoring and field calibration techniques were demonstrated by comparison with independent measurements. Tracking of solar irradiance diurnal variations appears to be accurate to within about 5% of full scale. Preliminary field tests of the SOHFI have shown reasonably close agreement with bulk aerodynamic heat flux estimates in freshwater and ocean environments (generally within about 20%) under low to moderate wind conditions. Performance under heavy weather suggests a need to develop better methods of submergence filtering. Ocean deployments and recoveries of drifting SOHFI-equipped buoys were made during May and June 1995, during the Combined Sensor Program of 1996 in the western tropical Pacific region, and in the Greenland Sea in May 1997. The Gulf Stream and Greenland Sea deployments pointed out the need for design modifications to improve resistance to seabird attacks. Better estimates of performance and limitations of this device require extended intercomparison tests under field conditions.
Abstract
The Skin-Layer Ocean Heat Flux Instrument (SOHFI) described by Sromovsky et al. (Part I, this issue) was field-tested in a combination of freshwater and ocean deployments. Solar irradiance monitoring and field calibration techniques were demonstrated by comparison with independent measurements. Tracking of solar irradiance diurnal variations appears to be accurate to within about 5% of full scale. Preliminary field tests of the SOHFI have shown reasonably close agreement with bulk aerodynamic heat flux estimates in freshwater and ocean environments (generally within about 20%) under low to moderate wind conditions. Performance under heavy weather suggests a need to develop better methods of submergence filtering. Ocean deployments and recoveries of drifting SOHFI-equipped buoys were made during May and June 1995, during the Combined Sensor Program of 1996 in the western tropical Pacific region, and in the Greenland Sea in May 1997. The Gulf Stream and Greenland Sea deployments pointed out the need for design modifications to improve resistance to seabird attacks. Better estimates of performance and limitations of this device require extended intercomparison tests under field conditions.
Abstract
This paper describes an instrument designed to measure the sum of gas phase and solid phase water, or total water, in cirrus clouds, and to be mounted in a pallet in the underbelly of the NASA WB-57 research aircraft. The ice water content of cirrus is determined by subtracting water vapor measured simultaneously by the Harvard water vapor instrument on the aircraft. The total water instrument uses an isokinetic inlet to maintain ambient particle concentrations as air enters the instrument duct, a 600-W heater mounted directly in the flow to evaporate the ice particles, and a Lyman-α photofragment fluorescence technique for detection of the total water content of the ambient air. Isokinetic flow is achieved with an actively controlled roots pump by referencing aircraft pressure, temperature, and true airspeed, together with instrument flow velocity, temperature, and pressure. Laboratory calibrations that utilize a water vapor addition system that adds air with a specific humidity tied to the vapor pressure of water at room temperature and crosschecked by axial and radial absorption of Lyman-α radiation at the detection axis are described in detail. The design provides for in-flight validation of the laboratory calibration by intercomparison with total water measured by radial absorption at the detection axis. Additionally, intercomparisons in clear air with the Harvard water vapor instrument are carried out. Based on performance of the Harvard water vapor instrument, this instrument has the detection capability of making accurate measurements of total water with mixing ratios in the mid- to upper troposphere of up to 2500 ppmv and mixing ratios in the lower stratosphere of about 5 ppmv, corresponding to almost three orders of magnitude in measurement capability.
Abstract
This paper describes an instrument designed to measure the sum of gas phase and solid phase water, or total water, in cirrus clouds, and to be mounted in a pallet in the underbelly of the NASA WB-57 research aircraft. The ice water content of cirrus is determined by subtracting water vapor measured simultaneously by the Harvard water vapor instrument on the aircraft. The total water instrument uses an isokinetic inlet to maintain ambient particle concentrations as air enters the instrument duct, a 600-W heater mounted directly in the flow to evaporate the ice particles, and a Lyman-α photofragment fluorescence technique for detection of the total water content of the ambient air. Isokinetic flow is achieved with an actively controlled roots pump by referencing aircraft pressure, temperature, and true airspeed, together with instrument flow velocity, temperature, and pressure. Laboratory calibrations that utilize a water vapor addition system that adds air with a specific humidity tied to the vapor pressure of water at room temperature and crosschecked by axial and radial absorption of Lyman-α radiation at the detection axis are described in detail. The design provides for in-flight validation of the laboratory calibration by intercomparison with total water measured by radial absorption at the detection axis. Additionally, intercomparisons in clear air with the Harvard water vapor instrument are carried out. Based on performance of the Harvard water vapor instrument, this instrument has the detection capability of making accurate measurements of total water with mixing ratios in the mid- to upper troposphere of up to 2500 ppmv and mixing ratios in the lower stratosphere of about 5 ppmv, corresponding to almost three orders of magnitude in measurement capability.